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Denote by Cα,rβ C, α > 0, r > 0, (see, e.g., [1]) the set of all 2π�periodic functions, sucht that for
all x ∈ R can be represented in the form of convolution

f(x) =
a0
2

+
1

π

π∫
−π

Pα,r,β(x− t)ϕ(t)dt, a0 ∈ R, ϕ ⊥ 1, (1)

where ϕ ∈ C, and Pα,r,β(t) is a generalized Poisson kernel of the form

Pα,r,β(t) =

∞∑
k=1

e−αk
r
cos
(
kt− βπ

2

)
, α > 0, r > 0, β ∈ R.

If f and ϕ are connected with a help of equality (1), then the function f in this equality is called
the generalized Poisson integral of the function ϕ and is denoted by Jα,rβ (ϕ). The function ϕ in the

equality (1) is called the generalized derivative of the function f and is denoted by fα,rβ .

By ρn(f ;x) we denote the deviation of the function f from its partial Fourier sum of order n− 1:

ρn(f ;x) := f(x)− Sn−1(f ;x),

where

Sn−1(f ;x) =
a0
2

+

n−1∑
k=1

(ak cos kx+ bk sin kx) ,

ak = ak(f) =
1

π

π∫
−π

f(t) cos ktdt, bk = bk(f) =
1

π

π∫
−π

f(t) sin ktdt,

and by En(f)C we denote the best uniform approximation of the function f by elements of the subspace
τ2n−1 of trigonometric polynomials tn−1(·) of the order n− 1:

En(f)C := inf
tn−1∈τ2n−1

‖f − Sn−1(f)‖C .

The norms ‖ρn(f ; ·)‖C can be estimated via En(f)C , using the Lebesgue inequality

‖ρn(f ; ·)‖C ≤
(

4

π2
lnn+O(1)

)
En(f)C , n ∈ N. (2)

On the whole space C the inequality (2) is asymptotically exact. At the same time for the sets of
functions Cα,rβ C the inequality (2) is not asymptotically exact.

We establish the asymptotically best possible Lebesgue-type inequalities for the functions f ∈ Cα,rβ C,

in which for all n, starting from the number n1 = n1(α, r), an additional term is estimated by absolute
constant.
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For arbitrary α > 0, r ∈ (0, 1) we denote by n1 = n1(α, r) the smallest integer n ∈ N, such that

1

αr

1

nr

(
1 + ln

πn1−r

αr

)
+

αr

n1−r
≤ 1

(3π)3
. (3)

Theorem 1. Let α > 0, r ∈ (0, 1), β ∈ R and n ∈ N. Then, for any function f ∈ Cα,rβ C and all

n ≥ n1(α, r) the following inequality holds

‖ρn(f ; ·)‖C ≤ e−αn
r

(
4

π2
ln
n1−r

αr
+ γn

)
En(f

α,r
β )C . (4)

Moreover, for arbitrary function f ∈ Cα,rβ C one can �nd a function F (x) = F (f, n, x) from the set

Cα,rβ C, such that En(F
α,r
β )C = En(f

α,r
β )C , such that for n ≥ n1(α, r) the equality holds

‖ρn(F ; ·)‖C = e−αn
r

(
4

π2
ln
n1−r

αr
+ γn

)
En(f

α,r
β )C . (5)

In (4) and (5) for the quantity γn = γn(α, r, β) the estimate holds |γn| ≤ 20π4.
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