A short note on Hurewicz and \mathcal{I} -Hurewicz properties in topological spaces

Upasana Samanta

(Jadavpur University, Kolkata-700032, West Bengal, India) E-mail: samanta.upasana@gmail.com

Theorem 1. Let X be an ϵ -space and let \mathcal{I} be an ideal having a pseudounoin, then X satisfies $S_{fin}(\Omega, \mathcal{O}^{\mathcal{I}-gp})$ if and only if X has Hurewicz property [4].

Lemma 2. [1, Theorem 4.1.2] (see also [5]) An ideal \mathcal{I} of \mathbb{N} is meager if and only if there is a partition $\{P_n : n \in \mathbb{N}\}$ of \mathbb{N} into finite sets such that each $A \in \mathcal{I}$ contains atmost finitely many P'_n s.

Proposition 3. For a space X and a meager ideal \mathcal{I} , X satisfies $S_{fin}(\Lambda, \mathcal{O}^{\mathcal{I}-gp})$ if and only if X has Hurewicz property.

Problem 4. Is there a Lindelöf non- ϵ -space such that $S_{fin}(\Omega, \mathcal{O}^{\mathcal{I}-gp})$ holds but $S_{fin}(\Lambda, \mathcal{O}^{\mathcal{I}-gp})$ fails?

Definition 5. A space X is said to have \mathcal{I} -Hurewicz property (in short \mathcal{I} H) if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}, \mathcal{V}_n$ is a finite subset of \mathcal{U}_n and for each $x \in X$, $\{n \in \mathbb{N} : x \notin \cup \mathcal{V}_n\} \in \mathcal{I}[2]$.

Theorem 6. Let X be an ϵ -space satisfying $CDR_{sub}(\Lambda, \Lambda)$ and let \mathcal{I} be a meager ideal of \mathbb{N} . If X has \mathcal{I} -Hurewicz property then X also has Hurewicz property.

Theorem 7. If a filter { does not have \mathcal{I} -Hurewicz property then $\chi(\mathcal{F}) \geq \mathfrak{b}(\mathcal{I})$.

Remark 8. *CH* denotes the Continuum Hypothesis. Assume $\neg CH$. Let \mathcal{I} be an ideal of \mathbb{N} and let k be an infinite cardinal satisfying $\mathfrak{b} < k < \mathfrak{b}(\mathcal{I})$. There is $X \subset \mathbb{N}^{\mathbb{N}}$ of size \mathfrak{b} which is not a Hurewicz space. But X is \mathcal{I} -Hurewicz.

Example 9. There exists a non- \mathcal{I} -Hurewicz filter of character $\mathfrak{b}(\mathcal{I})$. Consider a set $\{f_{\alpha} : \alpha < \mathfrak{b}(\mathcal{I})\}$ which is not \mathcal{I} -bounded. Let \mathcal{F} be a filter on $\mathbb{N} \times \mathbb{N}$ generated by the family $\{F_{\alpha} : \alpha < \mathfrak{b}(\mathcal{I})\}$ where $F_{\alpha} = \{(n,m) : m \geq f_{\alpha}(n), n \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, $\mathcal{U} = \{U(n,m) : m \in \mathbb{N}\}$ is an open cover of \mathcal{F} where for each $n, m \in \mathbb{N}$, $U(n,m) = \{A \subset \mathbb{N} \times \mathbb{N} = \min\{k \in \mathbb{N} : (n,k) \in A\}\}$.

References

- [1] T. Bartoszyński and H. Judah, Set Theory, On the Structure of the Real Line, A.K. Peters, 1995.
- [2] P. Das, Certain types of open covers and selection principles using ideals, Houston J. Math., 39(2) (2013), 637 650.
- [3] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [4] P. Das, U. Samanta and D. Chandra, Some observations on Hurewicz and *I*-Hurewicz property, Topology Appl., 258 (2019), 202 214.
- [5] M. Talagrand, Compacts de fontions measurables et filtres non measurables, Studia Math., 67 (1) (1980), 13 43.