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Invariant factors and their connections play an important role in the studying of matrix's structure
[3, 5]. For instance, at augmented one matrix with a single row to obtain another matrix are used
the relationships between the invariant factors of these matrices. B.W. Jones [2] state a fact that a
unimodular m × n (m < n) matrix A over a principal ideal domain may always be augmented with
a single row to obtain a unimodular (m+ 1)× n matrix B. Some relationships between the invariant
factors of an arbitrary matrix A and those of a one row prolongation B over the same area was
established by R. Thompson [4]. D. Carlson [1] obtained similar results in terms of a �nitely generated
module.

In this paper, we give necessary and su�cient conditions that a matrix A may be augmented with
a single row to obtain a matrix B over elementary divisor domains.

Let R be an elementary divisor domain [4] with 1 6= 0, i.e., every m × n matrix A over R have
diagonal reduction, namely A ∼ E = diag(ε1, . . . , εk, 0, . . . , 0), εi|εi+1, i = 1, . . . , k − 1, where the
matrix E is called the Smith normal form, the diagonal elements εi are invariant factors of the matrix
A. The notation a|b means that the element a is the divisor of the element b, i.e., b = ac, where c ∈ R.

Theorem 1. Let R be an elementary divisor domain, A be an m × n matrix over R, A ∼ E =
diag(ε1, . . . , εk, 0, . . . , 0), εi|εi+1, i = 1, . . . , k − 1. Let also δ1, . . . , δk ∈ R be nonzero elements such

that δi|δi+1, i = 1, . . . , k − 1. Then the matrix A may be augmented with a single row to obtain an

(m+ 1)× n matrix B ∼ ∆ = diag(δ1, . . . , δk, 0, . . . , 0), δi|δi+1, i = 1, . . . , k − 1, if and only if

δ1|ε1|δ2|ε2| . . . |δk|εk.
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