On quotient spaces and their spaces of continuous maps

Sergiy Maksymenko

(Institute of Mathematics of NAS of Ukraine, Tereshchenkivska str. 3, Kyiv, 01024, Ukraine) *E-mail:* maks@imath.kiev.ua

Eugene Polulyakh

(Institute of Mathematics of NAS of Ukraine, Tereshchenkivska str. 3, Kyiv, 01024, Ukraine) *E-mail:* polulyah@imath.kiev.ua

Let $p: X \to Y$ be a factor map between topological spaces, that is p is surjective and a subset $A \subset Y$ is open if and only if $p^{-1}(A)$ is open in X.

Let $\Delta = \{p^{-1}(y) \mid y \in Y\}$ be the partition of X into the inverse images of points of Y. A continuous map $h: X \to X$ will be called a Δ -map if for each $\omega \in \Delta$ its image $h(\omega)$ is contained in some element ω' of Δ . Hence every Δ -map h induces a map $\psi(h): Y \to Y$ making commutative the following diagram:

$$\begin{array}{cccc} X & \stackrel{h}{\longrightarrow} & X \\ p \downarrow & & \downarrow p \\ Y & \stackrel{\psi(h)}{\longrightarrow} & Y \end{array}$$
(1)

It is well known that $\psi(h)$ is continuous whenever h is so.

Let $\mathcal{E}(X, \Delta)$ be the monoid of all Δ -maps of X, and $\mathcal{E}(Y) = C(Y, Y)$ be the monoid of all continuous self-maps of Y. Let also $\mathcal{H}(X, \Delta)$ be the subgroup of $\mathcal{E}(X, \Delta)$ consisting of homeomorphisms and $\mathcal{H}(Y)$ be the group of homeomorphisms of Y.

Then the correspondence $h \mapsto \psi(h)$ is a well defined map

$$\psi: \mathcal{E}(X, \Delta) \to \mathcal{E}(Y) \tag{2}$$

being a homomorphism of monoids.

The following statement gives sufficient conditions under which ψ will be continuous with respect to compact open topologies on $\mathcal{E}(X, \Delta)$ and $\mathcal{E}(Y)$.

Lemma 1. Let $p: X \to Y$ be a factor map having the following property:

(K) for every compact subset $L \subset Y$ there exists a compact subset $K \subset X$ such that p(K) = L.

Then the homomorphism of monoids $\psi : \mathcal{E}(X, \Delta) \to \mathcal{E}(Y)$ is continuous with respect to compact open topologies.

Recall that a continuous map $p: X \to Y$

- is called *proper* if $p^{-1}(L)$ is compact for each compact $L \subset Y$;
- admits local cross-sections if for every $y \in Y$ there exists an open neighborhood V and a continuous map $f: V \to X$ such that $p \circ f = id_V$.

Corollary 2. Suppose Y is a locally compact Hausdorff space. Then each of the following conditions implies that the map $\psi : \mathcal{E}(X, \Delta) \to \mathcal{E}(Y)$ is continuous with respect to compact open topologies:

- (1) p is a proper map;
- (2) p is an open map and admits local cross sections;
- (3) p is a locally trivial fibration.

Let Y be a topological space. Say that two points $y, z \in Y$ are T_2 -disjoint (in Y) if they have disjoint neighborhoods. Denote by hcl(y) the set of all $z \in Y$ that are not T_2 -disjoint from y. Then $z \in hcl(y)$ if and only if each neighborhood of z intersects each neighborhood of y. We will call hcl(y) the Hausdorff closure of y.

We will say that $y \in Y$ is a *branch point* whenever $hcl(y) \setminus y \neq \emptyset$, so there are points that are not T_2 -disjoint from y. The set of all branch points of Y will be denoted by Br(Y).

Theorem 3. Let X be a locally compact Hausdorff topological space, Y be a T_1 -space whose set Br(Y)of branch points is locally finite, and $p: X \to Y$ be an open continuous and surjective map. Then for every compact $L \subset Y$ there exists a compact subset $K \subset X$ such that p(K) = L. In particular, due to Lemma 1, the map $(2) \ \psi : \mathcal{E}(X, \Delta) \to \mathcal{E}(Y)$ is continuous with respect to compact open topologies.