Some topological obstructions for strong coloring of uniform hypergraphs

Leonid Plachta

(L'viv, Ukraine) E-mail: dept25@gmail.com

A hypergraph H = (V, E) based on the vertex set V and with the edge set E is called k-uniform if all its edges have cardinality k. A strong l-coloring of the hypergraph H is a map $h: V \to [l]$ where $[l] = \{1, 2, ..., l\}$ such that for each edge $e = \{v_1, v_2, ..., v_k\} \in E$ the vertices $v_1, v_2, ..., v_k$ are labeled with different colors. Note that a strong coloring of a uniform hypergraph H is just a proper coloring of its 1-skelethon $H^{(1)}$, which is covered by a collection of k-cliques.

Let **S** be a family of nonempty subsets of some base set X. The generalized Kneser hypergraph $Kg_m^k(\mathbf{S})$ where $m \leq k-1$ is defined as follows. The vertices of $Kg_m^k(\mathbf{S})$ are the elements S_i of **S** and there is a k-edge $e = \{S_{i_1}, \ldots, S_{i_k}\}$ in $Kg_m^k(\mathbf{S})$ if and only if $S_{i_1} \cap \cdots \cap S_{i_{m+1}} = \emptyset$ for any distinct sets $S_{i_1}, \ldots, S_{i_{k+1}}$ from **S** (see also [1, 2]).

In the present talk, we represent k-uniform hypergraphs H as generalized Kneser hypergraphs $Kg_{k-1}^{k}(\mathbf{S})$. For the given k, l with $l \geq k$ we define the generalized Kneser k-uniform hypergraph $Kg_{k-1}^{k}(\mathbf{T})$ which is called the testing hypergraph for l-coloring of k-uniform hypergraphs. Both $Kg_{k-1}^{k}(\mathbf{S})$ and $Kg_{k-1}^{k}(\mathbf{T})$ have the natural geometric interpretation as cell complexes, denoted by $B_{k}(Kg_{k-1}^{k}(\mathbf{S}))$ and $B_{k,l}(\mathbf{T})$, respectively. The cell complexes $B_{k}(Kg_{k-1}^{k}(\mathbf{S}))$ and $B_{k,l}(\mathbf{T})$ are enhanced with natural action of the symmetric grup S_{k} . The action of the group S_{k} is effective on both cell complexes. For each l-coloring of a k-uniform hypergraph H there is a natural homomorfizm $g: Kg_{k-1}^{k}(\mathbf{S}) \to Kg_{k-1}^{k}(\mathbf{T})$ of hypergraphs $Kg_{k-1}^{k}(\mathbf{S})$ and $Kg_{k-1}^{k}(\mathbf{T})$. The homomorfizm $g: Kg_{k-1}^{k}(\mathbf{S}) \to Kg_{k-1}^{k}(\mathbf{T})$ induces an S_{k} -equivariant cellular map $g': B_{k}(Kg_{k-1}^{k}(\mathbf{S})) \to B_{k,l}(\mathbf{T})$. Therefore, the nonexistence of such S_{k} -equivariant map from $B_{k}(Kg_{k-1}^{k}(\mathbf{S}))$ to $B_{k,l}(\mathbf{T})$ is a topological obstruction for existence of strong l-coloring of the k-uniform hypergraph H. We discuss the conditions under which such topological obstructions do not vanish.

References

C.E.M.C. Lange, and G. M. Ziegler, Note on generalized Kneser Hypergraph coloring, J. Comb. Theory, ser. A 114, 2007, pp. 159-166.

^[2] G. M. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, Inventiones Math., 147, 2002, pp.671--691.