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It is shown that each homeomorphic W 1,1
loc solution to the Beltrami equation is the so-called lower

Q-homeomorphism with Q(z) = Kµ(z) where Kµ(z) is the dilatation quotient of this equation. It is
developed on this basis, see e.g. [2], the theory of the boundary behavior of such solutions.

Let D be a domain in the complex plane C and let µ : D → C be a measurable function with
|µ(z)| < 1 a.e. in D. The Beltrami equation is the equation of the form

fz = µ(z)fz (1)

where fz = ∂f = (fx+ ify)/2, fz = ∂f = (fx− ify)/2, z = x+ iy, and fx and fy are partial derivatives
of f in x and y, correspondingly. The function µ is called the complex coe�cient and

Kµ(z) =
1 + |µ(z)|
1− |µ(z)|

(2)

the dilatation quotient for the equation (1) that is degenerate if ess supKµ(z) =∞.

In [2] and [3], we follow Caratheodory in the de�nition of the prime ends for bounded �nitely
connected domains in C and refer readers to Chapter 9 in [1]. In what follows, DP denotes the
completion of the domain D by its prime ends with the the topology of prime ends, see Section 9.5
in [1]. Further, we assume that Kµ is extended by 0 outside of D.

Theorem 1. Let D and D′ be bounded �nitely connected domains in C and let f : D → D′ be a

homeomorphic W 1,1
loc solution of the Beltrami equation (1) with

δ(z0)∫
0

dr

||Kµ||(z0, r)
= ∞ ∀ z0 ∈ ∂D (3)

where 0 < δ(z0) < d(z0) = sup
z∈D
|z − z0| and ||Kµ||(z0, r) :=

∫
|z−z0|=r

Kµ(z) |dz| . Then f can be

extended to a homeomorphism of DP onto D′P .
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