On the group of isometries of foliated manifolds

A. Y. Narmanov

(Faculty of Mathematics, National University of Uzbekistan, Tashkent, 100174, Tashkent,

Uzbekistan;)

E-mail: narmanov@yandex.ru

A. N. Zoyidov

(Faculty of Mathematics, National University of Uzbekistan, Tashkent, 100174, Tashkent, Uzbekistan;)

E-mail: zoyid.azam.math@gmail.com

Let M be a connected Riemannian C^{∞} -manifold of dimension n. We will denote by (M, F) manifold M with k-dimensional foliation F on M.

Definition 1. If for the some C^r - diffeomorphism $\varphi : M \to M$ the image $\varphi(L_\alpha)$ of any leaf L_α of foliation F is a leaf of foliation F, we say that the φ is C^r - diffeomorphism of foliated manifold and write as $\varphi : (M, F) \to (M, F)$ [2].

Let's denote as $\operatorname{Diff}_F(M)$ the set of all C^r - diffeomorphisms of foliated manifold (M, F), where $r \geq 0$. The group $\operatorname{Diff}_F(M)$ is subgroup of $\operatorname{Diff}(M)$ and therefore it is topological group in compact open topology.

Recall a vector field X is called a foliated field if for every vector field Y, tangent to F, Lie brocket [X, Y] also is tangent to F. It is known that flow of every foliated field consists of diffeomorphisms of foliated manifold (M, F) [1]. The set L(M, F) of foliated vector fields is a Lie subalgebra of Lie algebra V(M) [2]. It follows from here that the group $\text{Diff}_F(M)$ contains the Lie group for which the Lie algebra is an algebra L(M, F).

Let M be a smooth connected finite-dimensional Riemannian manifold.

Definition 2. An isometry $\varphi : M \to M$ is called an isometry of foliated manifold (M, F) if it is diffeomorphism of foliated manifold (M, F) [1].

We will denote by $\operatorname{Iso}_F(M)$ the set of all C^r -isometries of foliated manifold (M, F), where $r \geq 0$. We have that

$$\operatorname{Iso}_F(M) = \operatorname{Diff}_F(M) \bigcap \operatorname{Iso}(M).$$

Let us recall that vector field X on riemannian manifold (M, g) is called Killing field if its flow consists of isometries of Riemannian manifold (M, g), that is $L_X g = 0$, where g is riemannian metric, $L_X g$ denotes Lie derivative of the metric g with respect to X. If X is foliated Killing vector field, it's flow consists of isometries of foliated manifold (M, F).) The set K(M, F) of foliated Killing vector fields is a Lie subalgebra of Lie algebra L(M, F). It follows from here that the group $\text{Iso}_F(M)$ contains the Lie group for which the Lie algebra is an algebra K(M, F).

Theorem 3. Let (M, F) be a foliated manifold where M is a smooth connected finite-dimensional Riemannian manifold. Then the group $Iso_F(M)$ is closed subset of Iso(M) in compact open topology.

Really Cartan's theorem states that on a closed subgroup of a Lie group there exists a differential structure with respect to which the closed subgroup is a Lie subgroup of a given Lie group.By using this fact we formulate following .

Theorem 4. Let (M, F) be a foliated manifold where M is a smooth connected finite-dimensional Riemannian manifold. Then the group $Iso_F(M)$ is Lie subgroup of Lie group Iso(M).

References

- A. Narmanov and A.Sharipov. On the group of foliation isometries, Methods of Functional Analysis and Topology, 2009, vol. 15, pp. 195-2009.
- [2] I. Tamura. Topology of Foliations: An Introduction, American Mathematical Society. Providence, Rhode Island, 1992. http://bookre.org/reader?file=582002.