The density and the τ -placed of the N_{τ}^{φ} -nucleus of a space X

F. G. Mukhamadiev

(National University of Uzbekistan, Uzbekistan) *E-mail:* farhod8717@mail.ru

Let X be a topological space and let ξ be a system of closed subsets of X. The system ξ is called *linked*, if any two elements of it have nonempty intersection. A linked system ξ of closed subsets of X is called *complete*, if for any closed set $F \subset X$, the condition

" any neighborhood OF contains the set $\Phi \in \xi$ " (*)

implies that $F \in \xi$ [1]. The set of all complete linked systems (CLS) in the space X is denoted by NX. Let $U_1, \ldots, U_k, V_1, \ldots, V_n$ be a set of nonempty open subsets of X. Set $O(U_1, \ldots, U_k) \langle V_1, \ldots, V_n \rangle = \{\xi \in NX : \text{for any } i = 1, \ldots, k \text{ there exists } F_i \in \xi \text{ such that } F_i \subset U_i, \text{ and for any } j = 1, \ldots, n \text{ and} \text{ any } \Phi \in \xi, \text{ the intersection } \Phi \cap V_j \text{ is nonempty } \}$. It is easily seen that the set of subsets of NX of the form $O(U_1, \ldots, U_k) \langle V_1, \ldots, V_n \rangle$ is an open basis of some topology on NX.

Definition 1. Let X be a T_1 -space, φ be a cardinal-valued function, and τ be a cardinal number. The N_{τ}^{φ} -nucleus of a space X is the space

$$N^{\varphi}_{\tau}X = \{\xi \in NX : \text{there exists } F \in \xi \text{ such that } \varphi(F) \leq \tau\}$$
 [2].

Definition 2. A topological space X is said to be N^{φ}_{τ} -nuclear if $N^{\varphi}_{\tau}X = NX$.

As φ , we take a density function d. Let $\tau = \aleph_0$.

The definition implies that any space X is N^d_{τ} -nuclear, where $\tau = d(X)$; in particular, any separable space X is $N^{\varphi}_{\aleph_0}$ -nuclear.

Theorem 3. Let X be an infinite T_1 -space. Then

1) $\pi w(N^d_{\aleph_0}X) = \pi w(X);$

2) $d(N^{d}_{\aleph_{0}}X) = d(X)$ (taken from [2]).

A set $A \subset X$ is called τ -placed in X if for each point $x \in X \setminus A$ there is a set P of type G_{τ} in X such that $x \in P \subset X \setminus A$ [3].

Put $q(X) = \min\{\tau \ge \aleph_0 : X \text{ is } \tau \text{-placed in } \beta X\}; q(X) \text{ is called the Hewitt-Nachbin number of } X.$ We say that X is a Q_{τ} -space if $q(X) \le \tau$.

A space X is called an m_{τ} -space, where τ is given cardinal, if for each canonical closed set F in X and each point $x \in F$ there is set P of type G_{τ} in X such that $x \in P \subset F$.

Clearly, X is an m_{τ} -space for $\tau = |X|$. This allows us to give the following definition: put $m(X) = min\{\tau \geq \aleph_0 : X \text{ is an } m_{\tau}\text{-space }\}$. The space X is called a *Moscow space* if $m(X) \leq \aleph_0$.

Theorem 4. Let $q(N^d_{\aleph_0}X) \leq \tau$ and $m(NX) \leq \tau$, then $N^d_{\aleph_0}X$ is τ -placed in NX.

Theorem 5. Let $m(NX) \leq \tau = d(X)$, then an $N^d_{\aleph_0}$ -nucleus $N^d_{\aleph_0}X$ is τ -placed in NX.

Theorem 6. Let NX is a Moscow space and X is a separable, then $N^d_{\aleph_0}X$ is τ -placed in NX.

References

- [1] A.V.Ivanov. A space of complete linked systems. // Siberian Mathematical Journal, 27: 863-875, 1986.
- [2] F.G.Mukhamadiev. On Certain Cardinal Properties of the N^φ_τ-Nucleus of a Space X. // Journal of Mathematical Sciences. 245 : 411-415, 2020.
- [3] A.V.Arkhangel'skii. Topological Function Spaces, volume 78 of Mathematics and Its Applications. Dordrecht / Boston / London : Kluwer Academic Publisher, 1992.