Dynamics and exact solutions of linear PDEs
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The report presents a new method for constructing exact solutions of the classical linear equations
of mathematical physics of parabolic, hyperbolic, elliptic and variable types. The method is a gener-
alization of the theory of finite-dimensional dynamics proposed for evolutionary differential equations
[1, 5]. The theory of finite-dimensional dynamics is a natural development of the theory of dynamical
systems. Dynamics make it possible to find families that depends on a finite number of parameters
among all solutions of PDEs (see [2, 3]).

Consider the following class of second order linear partial differential equations

g + 20(2)ury + c(2)ugy + h(x)uy + g(x)uy + f(x) =0, (1)

where b, ¢, h, g, f are functions of the class C*°. Such equations are equivalent to the following evolu-
tionary systems

Ut = v, (2)
vy = =2b(x)vy — c(T)uge — h(x)v — g(2)uy — f(y).
We call the system of ordinary differential equations of order k + 1
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a dynamics of equation (1) if the vector function

(¢, 1) := (20, —2b(z) 21 — c(z)y2 — h(x)z0 — g(z)y1 — f(7))

is a generating function of infinitesimal characteristic symmetries of this system [4]. Here x, yo, 20, y1,
21, Yo, 22 are canonical coordinates on the space of 2-jets J2(R!,R?).
Theorem 1. The vector field on J*(R',R?)
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is an infinitesimal characteristic symmetry of system (3) if the following conditions hold:

D*(p) — S(Y) =0,
DFtl(y) — S(Z) = 0.

Here
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Let I'* ¢ J?(R',R?) be a k-graph of some solution of system (3) and let ®; be the shift along the
vector field S. Then the surface ®;(I'¥) is a k-graph of a solution of system (2).

Example 2. Consider the telegraph equation
Uy — Uze = au + bug + ¢, (6)

where a, b, c are constants. This equation admits two types of dynamics:
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Here «, 8 are arbitrary constants. The general solution of equation (7) is
y(z) =C3 + Cy(x + a)?,
2(z) =C1 + Co(z + )?,

and the general solution of equation (8) is

1
y(z) 25023:2 + Csx + Oy,

(10)
z(x) :i (z(CoB — C3)(28 + z)o?+ + (8C) + 2b2%Cy + 4bCsx)a — 32 <a + lf) CQZL‘) :

Here C4, ..., Cy are arbitrary constants. Applying the shift transformations ®; to the obtained general
solutions, we obtain particular solutions of equation (6). For example, the function
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is a solution of equation (6). It corresponds to solution (10) witha =b=c=1, a =1,8 =0 and
C1=0,Co=1,C3=0,C4 =0,C5 = 0.
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