Automorphisms of cellular divisions of 2-sphere induced by functions with isolated critical points

Anna Kravchenko

(Taras Shevchenko National University of Kyiv, Ukraine) E-mail: annakravchenko1606@gmail.com

Sergiy Maksymenko

(Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine) *E-mail:* maks@imath.kiev.ua

In general, if $f: M \to \mathbb{R}$ is an arbitrary smooth function with isolated critical points, then a certain part of its "combinatorial symmetries" is reflected by a so-called *Kronrod-Reeb* graph Δ_f , see e.g. [6, 2, 5, 4, 14, 13, 12, 1]. Such a graph is obtained by shrinking each connected component of each level set $f^{-1}(c), c \in \mathbb{R}$, of f into a point.

Let $\mathcal{D}(M)$ the group of diffeomorphisms of M and

$$\mathcal{S}(f) = \{h \in \mathcal{D}(M) \mid f(h(x)) = f(x) \text{ for all } x \in M\}$$

be the group of diffeomorphisms h of M which "preserve" f in the sense that h leaves invariant each level set $f^{-1}(c), c \in \mathbb{R}$, of f. Hence it yields a certain permutation of connected components of $f^{-1}(c)$ being points of Δ_f , and thus induces a certain map $\rho(h) : \Delta_f \to \Delta_f$. It can be shown that $\rho(h)$ is a homeomorphism of Δ_f , and the correspondence $\rho : h \mapsto \rho(h)$ is a homeomorphism of groups

$$\rho: \mathcal{S}(f) \to \mathcal{H}(\Delta_f),$$

where $\mathcal{H}(\Delta_f)$ is the group of homeomorphisms of Δ_f . One can also verify that the image of $\rho(\mathcal{S}(f))$ is a *finite* group.

Let also $\mathcal{D}_{id}(M)$ be the identity path component of $\mathcal{D}(M)$, and

$$\mathcal{S}'(f) = \mathcal{S}(f) \cap \mathcal{D}_{id}(M)$$

be the group of f-preserving diffeomorphisms which are isotopic to the identity via an isotopy consisting of not necessarily f-preserving diffeomorphisms. We will be interested in the group

$$G_f = \rho(\mathcal{S}'(f))$$

of automorphisms of Δ_f induced by elements from $\mathcal{S}'(f)$.

Suppose that the set $\operatorname{Fix}(G_f)$ of common fixed points of all elements of G_f in Δ_f is non-empty. Let also $v \in \operatorname{Fix}(G_f)$ be a vertex of Δ_f fixed under G_f and $\operatorname{Star}(v)$ be a star of v, i.e. a small G_f -invariant neighborhood of v. Then each $\gamma \in G_f$ induces a homeomorphism of $\operatorname{Star}(v)$, and we can also define the group

$$G_v^{loc} = \{\gamma|_{Star(v)} \mid \gamma \in G_f\}$$

of restrictions of elements of G_f to Star(v). We will call G_v^{loc} the local stabilizer of v.

Remark 1. We will give now an equivalent description of the group G_v^{loc} . Let K be the critical component of a level-set of f corresponding to the vertex $v \in \Delta_f$. Since $v \in \operatorname{Fix}(G_f)$, we obtain that h(K) = K for all $h \in \mathcal{S}'(f)$. Let c = f(K) be the value of f on K, and $\varepsilon > 0$ be a small number such that the segment $[c - \varepsilon, c + \varepsilon]$ contains no other critical values of f except for c. Let also N_K be the connected component of $f^{-1}[c - \varepsilon, c + \varepsilon]$ containing K. Notice that the quotient map p induces a bijection between connected components ∂N_K and edges of Star(v). Moreover, $h(N_K) = N_K$ for all $h \in \mathcal{S}'(f)$, and hence h induces a permutation σ_h of connected components of ∂N_K . Then G_v^{loc} is the same as the group of permutations of connected components of ∂N_K induced by h.

In [9, 7, 8, 10, 11], the groups G_v^{loc} were calculated for all Morse functions on all orientable surfaces distinct from S^2 . In the present paper, we give a complete description of the structure of the group G_v^{loc} to the case when $M = S^2$. For the convenience of the reader we present a general statement about the structure of the group G_v^{loc} for all orientable surfaces.

Theorem 2. Let $f \in C^{\infty}(M, \mathbb{R})$ be a Morse function and $v \in Fix(G_f)$ be some vertex.

- (1) If $M \neq S^2, T^2$, then $G_v^{loc} \approx \mathbb{Z}_n$, for some $n \ge 1$, [9].
- (2) If $M = T^2$, then $G_v^{loc} \approx \mathbb{Z}_m \times \mathbb{Z}_{mn}$, for some $m, n \ge 1$, [7, 8, 10].
- (3) Let $M = S^2$. Then the following statements hold.
 - (a) For each vertex $v \in Fix(G_f)$, the group G_v^{loc} is isomorphic to a finite subgroup of SO(3), that is, to one of the following groups, see [3, pp. 21-23]:

$$\mathbb{Z}_n, \mathbb{D}_n, \mathbb{A}_4, \mathbb{S}_4, \mathbb{A}_5, (n \ge 1).$$
 (1)

- (b) If $\operatorname{Fix}(G_f)$ has at least one edge, then for any vertex $v \in \operatorname{Fix}(G_f)$, the group G_v^{loc} is cyclic.
- (c) If $\operatorname{Fix}(G_f)$ consists of a unique vertex v and G_v^{loc} is non-trivial and cyclic, then $G_v^{loc} \cong \mathbb{Z}_2$.

References

- E. B. Batista, J. C. F. Costa, and I. S. Meza-Sarmiento. Topological classification of circle-valued simple Morse-Bott functions. J. Singul, 17:388-402, 2018.
- [2] A. V. Bolsinov and A. T. Fomenko. Vvedenie v topologiyu integriruemykh gamiltonovykh sistem (Introduction to the topology of integrable Hamiltonian systems). Nauka, Moscow, 1997.
- [3] Felix C. Klein. Lectures on the ikosahedron and the solution of equations of the equations of the fiffth degree. Cornel University Library, 322:21-23, 1888.
- [4] E. A. Kudryavtseva. Realization of smooth functions on surfaces as height functions. Mat. Sb., 190(3):29-88, 1999.
- [5] E. V. Kulinich. On topologically equivalent Morse functions on surfaces. Methods Funct. Anal. Topology, 4(1):59-64, 1998.
- [6] A. S. Kronrod. On functions of two variables.5(1(35)):24-134, 1950. Uspehi Matem. Nauk (N.S.),
- [7] S. Maksymenko and B. Feshchenko. Orbits of smooth functions on 2-torus and their homotopy types. Matematychni Studii, 44(1):67-84, 2015.
- [8] S. Maksymenko and B. Feshchenko. Smooth functions on 2-torus whose kronrod-reeb graph contains a cycle. Methods Funct. Anal. Topology, 21(1):22-40, 2015.
- [9] Sergiy Maksymenko. Deformations of functions on surfaces by isotopic to the identity diffeomorphisms. page arXiv:math/1311.3347, 2016.
- [10] Sergiy Maksymenko and Bogdan Feshchenko. Homotopy properties of spaces of smooth functions on 2-torus. Ukrainian Math. Journal, 66(9):1205-1212, 2014.
- [11] A. Kravchenko and S. Maksymenko. Automorphisms of Kronrod-Reeb graphs of Morse functions on compact surfaces. European Journal of Mathematics, page arXiv:1808.08746, 2018.
- [12] 33] Lukasz Patryk Michalak. Realization of a graph as the Reeb graph of a Morse function on a manifold. Topol. Methods Nonlinear Anal., 52(2):749-762, 2018.
- [13] E. A. Polulyakh. Kronrod-Reeb graphs of functions on noncompact two-dimensional surfaces. II. Ukrainian Math. J., 67(10):1572-1583, 2016. Translation of Ukranian. Mat. Zh. 67 (2015), no. 10, 1398-1408.
- [14] V. V. Sharko. Smooth and topological equivalence of functions on surfaces. Ukr. Mat. Zh., 55(5):687-700, 2003.