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We denote by N := {1, 2, . . . }, R, R+ := {x ∈ R : x ≥ 0}, R+
∗ := R+\0, and C the sets of natural, of

real, of positive, of strictly positive, and of complex numbers, each endowed with its natural order (≤,
sup / inf), algebraic, geometric and topological structure.

Mixed areas/volumes. Let S be a bounded subset in C with the support function [1, Ch. 1], [2]

SpS(z) :=
z ∈ C

sup
w∈S

Re(zw̄), spS(t) :=
t ∈ R

SpS(eit), and ∆S(t) :=
t ∈ R

(spS)′
left

(t) +

∫ t

0
spS(x) dx,

where (spS)′
left

is the left derivative of spS . The mixed area (of Minkowski) F(S1, S2) of bounded sets
S1, S2 ⊂ C is integrals [1, Ch. 1, 3], [2], [3, � 4]

F(S1, S2) :=
1

2

∫ 2π

0
spS1

(t) d∆S2(t) =
1

2

∫ 2π

0

(
spS1

spS2
− (spS1

)′
left

(spS2
)′
left

)
(t) dt = F(S2, S1).

Convexity with respect to a pair of functions. Let I ⊂ R be an open interval, and let f1 : I → R
and f2 : I → R be a pair of functions. A function g : I → R will be called convex with respect to the
pair f1, f2, or, brie�y, (f1, f2)-convex if there is a number d > 0 such that for each x1, x2 ∈ I with
|x1 − x2| < d and for each C1, C2 ∈ R such that

g(x1) ≤ C1f1(x1) + C2f(x1), g(x2) ≤ C1f1(x2) + C2f(x2),

we have g(x) ≤ C1f1(x) + C2f(x) for each x ∈ (x1, x2) [4, Ch. I, � 1]. So, if g : R+
∗ → R+

∗ is (f1, f2)-
convex for the pair f1 : x 7−→

x ∈ R+
∗

x and f1 : x 7−→
x ∈ R+

∗

1/x, then we say that g is (x, 1/x)-convex.

Entire functions in C. Even the following special result develops [3, � 4], [5], [6, Ch. 3, 4.2].
Let f 6= 0 be an entire function of exponential type with the indicator of growth of f denoted by

Ind1[f ](z) := lim sup
0<r→+∞

ln
∣∣f(rz)

∣∣
r

∈
z ∈ C

R.

The function Ind1[f ] is convex and positive homogeneous on C. Therefore, there is a non-empty convex
compact set If ⊂ C with SpIf = Ind1[f ] called the indicator diagram of this entire function f .

Theorem 1. Let f 6= 0 be an entire function of exponential type with the indicator diagram If . Suppose
that the function f vanish on a sequence Z = (zk)k∈N ⊂ C, i.e., f(zk) = 0 for each k ∈ N. If K is a
non-empty convex compact subset in C, and g : R+

∗ → R+
∗ is an increasing (x, 1/x)-convex function on

R+
∗ , such that

0 < lim inf
0<x→+∞

g(x)

x
≤ lim sup

0<x→+∞

g(x)

x
< +∞, (1)
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then

lim sup
1<a→+∞

lim sup
r→+∞

π
ar∫
r
g(1/x) dx

∑
r<|zk|≤ar

g
( 1

|zk|

)
spK

( zk
|zk|

)
≤ F(If ,K). (2)

Besides, for the identity function g : x 7−→
x ∈ R+

∗

x and for any non-empty convex compact subsets S and

K in C, there is an entire function f 6= 0 of exponential type with zero sequence Z = (zk)k∈N ⊂ C and
the indicator diagram If = S such that we have the equality in (2).

Theorem 1 can be extended to entire functions of �nite order ρ ∈ R+ of one or several complex
variables with signi�cant generalizations of mixed areas/volumes for ρ-convex sets. Thus, we obtain
numerous exact results on the completeness of systems of entire functions in classical function spaces
on sets in Cn for n ∈ N in terms of the mutual indicator of entire function and set [5], [6, Ch. 3, 4.2].

Here we note only the simplest version of the application of Theorem 1 to completeness questions.

Completeness of exponential systems. For a compact subset S of C, we denote by C(S)∩Hol(intS)
the normed space of all continuous functions f : S → C such that the restriction f to the interior intS
of S is holomorphic if this interior intS is non-empty, equipped with the norm ‖f‖S := sup

s∈S

∣∣f(s)
∣∣.

Theorem 2. Let S be a compact subset of the complex plane such that C \ S is connected. Let
Z = (zk)k∈N ⊂ C be a sequence of pairwise distinct numbers. If there are a non-empty compact convex
subset K ⊂ C and an increasing (x, 1/x)-convex function g : R+

∗ → R+
∗ satisfying (1) such that

lim sup
1<a→+∞

lim sup
r→+∞

π
ar∫
r
g(1/x) dx

∑
r<|zk|≤ar

g
( 1

|zk|

)
spK

( z̄k
|zk|

)
> F(I,K).

then the closure of the linear hull of
{
ezks : k ∈ N

}
in C(S)∩Hol(intS) coincides with C(S)∩Hol(intS).

Holomorphic functions in the unit disk/ball. In [7] and [8], we �rst used ρ-trigonometrically
convex and ρ-subspherical functions to study zero sets of holomorphic functions on the unit disk in C
and on the unit ball in Cn, respectively. Some of these results can be obtained in a more general form
in terms of mixed areas/volumes and Hausdor� measures of zero sets.
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