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Let us consider the semi-direct sum G x C;;‘eg of the loop Lie algebra G := c/lmf(Tl‘N), consisting of

the superconformal vector fields on a supertor TV in the forms:
~ 1 N
a:=ad/0xr + 3 Zizl(Dﬁia)Dﬁ'“ a:=a(x,%;\), (1)

where a € C°(T!V x (DL UDL); Ag), (,9) € TV ~ St x AN, A := Ag @ A; is a infinite-dimensional
Grassmann algebra over C D Ag, ¥ := (¥1,72,...,9y) and Dy, := 9/09; + ¥;0/0x, i = 1, N, which
are holomorphic in the "spectral" parameter A € C on the interior ]D)}r C C and exterior D! ¢ C
regions of the unit centrally located disk D' C C, and its regular dual space Gyeg With respect to the
parity:

7~ —1 N 7 N 5%

(I,a)o = res A / dzdV (la), ©:=1(z,9;\)(dz+ >~ 0idd;) € G, (2)

TN i=1

where [ € C°(THE =D » (DL UDL); Ay) if N =2k — 1 and [ € C®°(TH? x (DL UDL); Ag) if N = 2k,
k € N. The superconformal loop Lie algebra G possesses the commutator:

.7 U 1 N
[a,b] =¢, ¢:=c0/0x+ 5 Zizl(DﬁiC)Dﬂi,

— a(0b/0x) — b(da/Ox) + % S (Doa)Dyb). abed,

splits into the direct sum of its Lie subalgebras G = g+ a5, Q for whi~ch the fqllowjng dual spaces are
identified: G reg = ~G_,G* reg = ~ G,. Here d(o0) = 0 for any a()\) € G_. On G x G, one determines
the commutator:

[a 5 1,b x ] = [a,b] x (adgim — adil), a,beG, I,meq;

reg»
where ad* is the co-adjoint action of G with respect to the parity (2) and
(_1)N+1 N

4 — N
adyl = lya + lay + :
2 i=1

(Dﬁil)(Dﬁia)

for any vector field a € G and a fixed element Il e G
form:

regr a8 well as nondegenerate symmetric bilinear

(@ 1,bxm)=(I,b)+ (m,a)o.
One constructs the central extension & := & @ C of the Lie algebra & := Hzegl(é X Q:eg) by the
2-cocycle [1]:
wa(@ x 1,b x m) = / dz((1,0b/02)o — (1,0a/d2)0), (axl),(bxm)e&, zeS.
St

The Lie algebra & permits the standard splitting G = (’5+ @ G_ of the Lie algebra ® into the direct
sum of its Lie subalgebras & := [Lesi (G xG* reg) and &= [Lesi(G6-xGx reg)). Thus, by means
of the R-operator approach [2] one introduces the following Lie-Poisson bracket:

{m,v¥r = (@ x L [RV,u(@ x 1), Vip(a w D)) + V(@ x 1), RVw(a x 1)) +

+wo(RV (@ x 1), Viv(a x 1)) + wo(Vyep(a x 1), RViv(a x 1)), (3)
1



2

where p,v € D(B*) are arbitrary smooth by Frechet functionals on &* R = (P —P.)/2, P, and
P_ are projectors on Q5+ and &_ respectively, on the dual space ®* ~ & to the Lie algebra ®. Here
Vih(ax 1) == (Vih; x Vihg) € & and V,h(ax 1) := (Vih; x Vihg) € ® are left and right gradients of
any smooth functional h € D(&*) at a point (@ x [) € &*. Due to the Adler-Kostant-Symes theory [2]
the Lie-Poisson bracket (3) generates the hierarchy of Hamiltonian flows:

d(awx 1)/ot, = ad;,w(p>(m)(ap<z>_{a><zh@}R (axl)e®, pel,,

where P, V@) (ax [) = (vlhlﬁi x Vihd)), Vih®) (aw D) = WYih(@ax D), Vi ~ Y ey, Vihi A9 and

tha ~ Zj€Z+ Viha jA™9 as |A| = oo, for any Casimir invariant h € I(QS*), satisfying, by definition,
the following relationship:

adg, h(ax l)(alxl) (axl) e®”.
Any two Hamiltonian flows on &* in the forms:
dawxi)/oy={ax,h®(@ax g, 0@xi)/ot={axl,h@xli)}z,
where V;hW) = APV h(a x 1), Vih® = XNeeVih(a x 1), py,pr € Z, and h € I(&*), give rise to the
separately commuting evolution equations:
0a/dy = —[Vih") ] + O(Vih")) [0z, 040t = ~[Vih{"),a] + O(Vih{")) 0z, (4)
and
01/0y = —ad;, " [+ ad;VihY) + 8(VihY)) [0z,

ol/0t = —ady, 0 [+ ad;Vin +a(vin),)/ox.

Proposition 1. The commutativity of evolutions (4) is equwalent to the relationship:
Vb, Vih" ]~ a(V, h@ )0t + O(V, h )0y =0, (5)

which is reduced on every coadjoint orbit of the Lie algebra & to the Laz-Sato representation for some
system of nonlinear heavenly type equations on a functional supermanifold. The relationship (5) is a
compatibility condition for the following linear vector equations:

/0y +Vihp =0, 99/0z +a =0, 9/t +Vih{ vy =0,
where (y,t; X, z,z,0) € (R? x (C x S' x TUN)) and ¢ € C*(R? x (C x S' x TUN)Y); C).

By use of the Lax-Sato compatibility condition (5) one can construct integrable systems of heavenly
type equations on functional supermanifolds, which can be considered as generalizations of Lax-Sato
integrable superanalogs [3] of the Mikhalev-Pavlov heavenly type equation, choosing the smooth func-
tions a := Zf:_ll w (2, 0)A* — AK and [ := EkK:_ll €ex(2,0)NF, K € N, in (1) and (2) respectively.
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