Trace Regularization Problem On a Banach Space

Erdal Gül

(Yildiz Technical University, Mathematics Department, Istanbul, Turkey) *E-mail:* gul@yildiz.edu.tr

Let \mathcal{H} be a separable Hilbert space and let $S_1[\mathcal{H}]$ be the trace class operators on \mathcal{H} (First Schatten Class, [3]).

Consider $\mathcal{H}_1 = L^2(\mathcal{H}; [0, \pi])$ and define an inner product on \mathcal{H}_1 by:

$$(f,g)_{\mathcal{H}_1} = \int_0^\pi (f(t),g(t))_{\mathcal{H}} dt$$

for all $f, g \in \mathcal{H}_1$.

• With this inner product, \mathcal{H}_1 is also a separable Hilbert space.

Here, we study the same problem in [2], with \mathcal{H} replaced by a arbitrary separable Banach space \mathcal{B} , under the following conditions:

- (1) Q(t) has a weak second-order derivative in $[0, \pi]$ and for $t \in [0, \pi]$, $Q^{(i)}(t)$ (i = 0, 1, 2) is a self adjoint trace class operator on \mathcal{B} .
- (2) $||Q||_{\mathcal{H}_1} < 1.$
- (3) \mathcal{H}_1 has an o.n.b. $\{\varphi_n\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} \|Q\varphi_n\|_{\mathcal{H}_1} < \infty$.
- (4) $\|Q^i(t)\|_{S_1[\mathcal{B}]}$ (i = 0, 1, 2) is a bounded measurable function on $[0, \pi]$.

It is clear from (4), that this is a nontrivial problem since, among other things, in the standard approach, there are a number of possible definitions of $S_1[\mathcal{B}]$ (see [3] and Pietsch [9]).

We assume that \mathcal{B} is a continuous dense embedding in a separable Hilbert space \mathcal{H} and for each $f, g \in \mathcal{B}, (f, g)_h = (f, g)_{\mathcal{H}}$ is the Hilbert functional on \mathcal{B} .

Theorem 1 (Polar Representation Theorem). Let \mathcal{B} be a separable Banach space. If $A \in \mathbb{C}[\mathcal{B}]$, then there exists a partial isometry U and a self-adjoint operator T, with D(T) = D(A) and A = UT. Furthermore, $T = [A^*A]^{1/2}$ in a well-defined sense.

Def. If $A \in \mathbb{S}_1[\mathcal{B}]$, we called it a trace class (or nuclear) operator on \mathcal{B} .

- * Since $\mathbb{S}_p[\mathcal{H}]$ is a two sided *ideal, it follows that the same is true for $\mathbb{S}_p[\mathcal{B}]$.
- * For $1 \leq p < \infty$, $A \in \mathbb{S}_p[\mathcal{B}]$ and $B \in \mathcal{L}[\mathcal{B}]$ then $AB, BA \in \mathbb{S}_p[\mathcal{B}]$ and

$$\|AB\|_{\mathbb{S}_{p}[\mathcal{B}]} \leq \|B\|_{\mathcal{L}[\mathcal{B}]} \|A\|_{\mathbb{S}_{p}[\mathcal{B}]}$$
$$\|BA\|_{\mathbb{S}_{p}[\mathcal{B}]} \leq \|B\|_{\mathcal{L}[\mathcal{B}]} \|A\|_{\mathbb{S}_{p}[\mathcal{B}]}$$

Lemma 2. If $\lambda \notin \sigma(L_0)$ then $QR_0(\lambda) \in \mathbb{S}_1[\mathcal{H}_1]$

Lemma 3. The operator valued function $R(\lambda) - R_0(\lambda)$ is analytic in $\rho(L)$, the resolvent set of L, with respect to the $\mathbb{S}_1[\mathcal{H}_1]$ norm.

Theorem 4. The regularized trace formula for operator L on B with the conditions on operator function Q(t) is given by

$$\sum_{m=0}^{\infty} \left[\sum_{n=1}^{\infty} (\lambda_{mn} - \mu_m) - \frac{1}{\pi} \int_0^{\pi} tr Q(t) dt \right] = \frac{1}{4} \left[tr(Q(0) + tr Q(\pi)) \right]_{1}$$

References

- [1] A. Grothendieck, Products tensoriels topologiques et espaces nucleaires, Memoirs of the American Mathematical Society, 16 (1955).
- [2] E. Gül, On the regularized trace of a second order differential operator, Applied Mathematics and Computation 198: 471-480, 2008.
- [3] T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman operator Calculus, Springer, New York, (2016).
- [4] J. Kuelbs, Gaussian measures on a Banach space, Journal of Functional Analysis 5 (1970), 354-367.
- [5] P. D. Lax, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633-647.
- [6] G. Lumer, Spectral operators, Hermitian operators and bounded groups, Acta. Sci. Math. (Szeged) 25 (1964), 75-85.
- [7] L. A. Lusternik and V. J. Sobolev, Elements of functional analysis, (English Translation) Fredrich Ungar, New York, (1979).
- [8] G. Maksudov, M. Bayramoglu and E. E. Adıgüzelov, On regularized trace of Sturm-Liouville operator on a finite interval with the unbounded operator coefficient, Dokl. Akad. Nauk SSSR 30(1), (1984), 169-173.
- [9] A. Pietsch, History of Banach Spaces and Operator Theory, Birkhäuser, Boston, (2007).
- [10] S. J. Szarek, Banach space without a basis which has the bounded approximation property, Acta Math. 159, (1987), 81-98.