Inverse problem for tree of Stietjes strings
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Finite-dimensional spectral problems on an interval were considered in [1] (some recent results see
in [4], [3] and applications in [2]). Finite-dimensional spectral problems on graphs occur in various
fields of physics (see e.g. [5], [6] and [7]).

We consider a tree T' rooted at a pendant vertex. All edges are directed away from the root. Each
edge e; of this tree is a Stieltjes string with point masses m) (k =1,2,...,n;, j =1,2,...,q) and

. ng o
subintervals i (k = 0,1,...,n;). The total length of e; is ; = ;;o l7. We denote nj = nj — 1 if

l,jlj =0 and n; = n; if l%j > (. The Dirichlet problem on this tree consists of the following equations.
For each edge:
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For each interior vertex with incoming edge e; and outgoing edges e, we have
u%ﬁ_l = ug, (2)
and ' ‘
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For an edge e; incident with a pendant vertex (except of the root) we have the Dirichlet boundary
condition:

u%jH =0. (4)
If e; is the edge incident with the root then at the root we have
ug = 0. (5)

The Neumann problem consists of equations (1)-(4) and
up = uy. (6)
at the root.

First of all we notice that interior vertices of degree 2 do not influence the results and we can
assume absence of such vertices without losses of generality. Let P be a path in the tree T involving
the maximum number of masses. Obviously it starts and finishes with pendant vertices. We denote
the initial vertex of P by vy and choose it as the root of the tree. The enumeration of other vertices
is arbitrary. We denote the edge incoming into a vertex v; by e; for all . Then P : vy — v1 — vs, —
Vsq —> ... = Vs,_, — Us,.. Deleting vp and e; we obtain a new tree 7" rooted at the vertex vy.

Since the degree of vy is d(vy) > 2 we can divide our tree 7" into subtrees 17, T5, ..., Té(vl)_l having

v1 as the only common vertex. (We say that 77, 15, ..., Té(vl)_l are complementary subtrees of T".
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Denote by ¢,  (z) (where z = A?) the characteristic polynomial of problem (1)- (4), (6) on the
tree T' and by ¢p, | (z) the characteristic polynomial of problem (1)~ (4), (5) on this tree. These
polynomials are normalized such that

v0) (0
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@D r(v)(2) is the characteristic polynomial of the Dirichlet problem (1)~ (4), (5) on 7y and ¢y ,(v,)(2)
is the characteristic polynomial of the Neumann problem (1)- (4), (6) on T’ and so on.

The inverse problem lies in recovering the spectral problem data {mk} vy {0 } o using the spectra,
{titi——n, k2o @and {vk}i__,, ko of the Neumann and Dirichlet problems.

The following theorem gives sufficient conditions for existence of solution of such inverse problem.

Theorem 1. Let {pup}y__, 1.0 and {vili__, .o be symmetric (u_p = —pp, v—) = —vi) and
monotonic sequences of real numbers which interlace:

0< (1)< (11)? < oo < (n)* < ()%
Let T be a metric tree of a prescribed form rooted at a pendant vertex vy with prescribed lengths of
edges [; >0 (j =1,2,...,q, q is the number of edges in T).
Then A
1) there exist numbers n; € {0} UN (j =1,2,...,q), sequences of positive numbers {mj },., (point
masses on the edge ej, j =1,2,. ,q) and numbers {1}, } o (1. >0 forallk =0,1,...,n; —1,1,, >0

for all j = 1,2,...,g such that Z l] =1, Z nj = n, the spectrum of Neumann problem (1)-(4),

(6), coincides with {pk}p__,, 1.0 and the spectrum of Dirichlet problem (1)-(4), (5) coincides with

(v} i, kos
2) the two spectra {prtp__,, z0 and {vk}i__,, 1o and the length Iy of the edge incident with the

root uniquely determine the masses {mk}k 1 (pomt masses on the edge e1) and lengths {1} vl of the
subintervals on this edge.
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