Inverse problem for tree of Stietjes strings

A. Dudko

(South Ukrainian National Pedagogical University named after K.D. Ushynsky) *E-mail:* nastysha00301@gmail.com

V. Pivovarchik

(South Ukrainian National Pedagogical University named after K.D. Ushynsky) *E-mail:* vpivovarchik@gmail.com

Finite-dimensional spectral problems on an interval were considered in [1] (some recent results see in [4], [3] and applications in [2]). Finite-dimensional spectral problems on graphs occur in various fields of physics (see e.g. [5], [6] and [7]).

We consider a tree T rooted at a pendant vertex. All edges are directed away from the root. Each edge e_j of this tree is a Stieltjes string with point masses m_k^j $(k = 1, 2, ..., n_j, j = 1, 2, ..., q)$ and subintervals l_k^j $(k = 0, 1, ..., n_j)$. The total length of e_j is $l_j = \sum_{k=0}^{n_j} l_k^j$. We denote $\tilde{n}_j = n_j - 1$ if

 $l_{n_j}^j = 0$ and $\tilde{n}_j = n_j$ if $l_{n_j}^j > 0$. The Dirichlet problem on this tree consists of the following equations. For each edge:

$$\frac{u_k^j - u_{k+1}^j}{l_k^j} + \frac{u_k^j - u_{k-1}^j}{l_{k-1}^j} - m_k^j \lambda^2 u_k^j = 0, \quad (k = 1, 2, \dots, \tilde{n}_j, \ j = 1, 2, \dots, q).$$
(1)

For each interior vertex with incoming edge e_j and outgoing edges e_r we have

$$u_{\tilde{n}_j+1}^j = u_0^r, (2)$$

and

$$\frac{u_{\tilde{n}_j+1}^j - u_{\tilde{n}_j}^j}{l_{\tilde{n}_j}^j} + \sum_r \frac{u_0^r - u_1^r}{l_0^r} = \begin{cases} 0, \text{ if } l_{n_j}^j > 0, \\ -m_{n_j}^j \lambda^2 u_{n_j}^j, \text{ if } l_{n_j}^j = 0. \end{cases}$$
(3)

For an edge e_j incident with a pendant vertex (except of the root) we have the Dirichlet boundary condition:

$$u_{n_j+1}^j = 0. (4)$$

If e_1 is the edge incident with the root then at the root we have

$$u_0^1 = 0.$$
 (5)

The Neumann problem consists of equations (1)-(4) and

$$u_0^1 = u_1^1. (6)$$

at the root.

First of all we notice that interior vertices of degree 2 do not influence the results and we can assume absence of such vertices without losses of generality. Let P be a path in the tree T involving the maximum number of masses. Obviously it starts and finishes with pendant vertices. We denote the initial vertex of P by v_0 and choose it as the root of the tree. The enumeration of other vertices is arbitrary. We denote the edge incoming into a vertex v_i by e_i for all i. Then $P: v_0 \to v_1 \to v_{s_2} \to v_{s_3} \to \ldots \to v_{s_{r-1}} \to v_{s_r}$. Deleting v_0 and e_1 we obtain a new tree T' rooted at the vertex v_1 . Since the degree of v_1 is $d(v_1) > 2$ we can divide our tree T' into subtrees $T'_1, T'_2, \ldots, T'_{d(v_1)-1}$ having

Since the degree of v_1 is $d(v_1) > 2$ we can divide our tree T' into subtrees $T'_1, T'_2, ..., T'_{d(v_1)-1}$ having v_1 as the only common vertex. (We say that $T'_1, T'_2, ..., T'_{d(v_1)-1}$ are complementary subtrees of T'.

Denote by $\phi_{N_{(v_0)}}(z)$ (where $z = \lambda^2$) the characteristic polynomial of problem (1)– (4), (6) on the tree T and by $\phi_{D_{(v_0)}}(z)$ the characteristic polynomial of problem (1)–(4), (5) on this tree. These polynomials are normalized such that

$$\frac{\phi_{D(v_0)}(0)}{\phi_{N(v_0)}(0)} = l_1 + \frac{1}{\frac{d^{(v_1)-1}}{\sum\limits_{r=1}^{\infty} \frac{\phi_{N_r(v_1)}(0)}{\phi_{D_r(v_1)}(0)}}}$$

,

 $\phi_{D,r(v_1)}(z)$ is the characteristic polynomial of the Dirichlet problem (1)– (4), (5) on T'_r and $\phi_{N,r(v_1)}(z)$ is the characteristic polynomial of the Neumann problem (1)–(4), (6) on T'_r and so on.

The inverse problem lies in recovering the spectral problem data $\{m_k^j\}_{k=1}^{n_j}$, $\{l_k^j\}_{k=0}^{n_j}$ using the spectra $\{\mu_k\}_{k=-n,\ k\neq 0}^n$ and $\{\nu_k\}_{k=-n,\ k\neq 0}^n$ of the Neumann and Dirichlet problems. The following theorem gives sufficient conditions for existence of solution of such inverse problem.

Theorem 1. Let $\{\mu_k\}_{k=-n, k\neq 0}^n$ and $\{\nu_k\}_{k=-n, k\neq 0}^n$ be symmetric $(\mu_{-k} = -\mu_k, \nu_{-k} = -\nu_k)$ and monotonic sequences of real numbers which interlace:

$$0 < (\mu_1)^2 < (\nu_1)^2 < \dots < (\mu_n)^2 < (\nu_n)^2.$$

Let T be a metric tree of a prescribed form rooted at a pendant vertex v_0 with prescribed lengths of edges $l_j > 0$ (j = 1, 2, ..., q, q is the number of edges in T). Then

1) there exist numbers $n_j \in \{0\} \cup \mathbb{N}$ (j = 1, 2, ..., q), sequences of positive numbers $\{m_k^j\}_{k=1}^{n_j}$ (point masses on the edge e_j , j = 1, 2, ..., q and numbers $\{l_k^j\}_{k=0}^{n_j}$ $(l_k^j > 0 \text{ for all } k = 0, 1, ..., n_j - 1, l_{n_j} \ge 0$ for all j = 1, 2, ..., g such that $\sum_{k=0}^{n_j} l_k^j = l_j$, $\sum_{j=1}^q n_j = n$, the spectrum of Neumann problem (1)-(4), (6), coincides with $\{\mu_k\}_{k=-n, k\neq 0}^n$ and the spectrum of Dirichlet problem (1)-(4), (5) coincides with $\{\nu_k\}_{k=-n, \ k\neq 0}^n;$

2) the two spectra $\{\mu_k\}_{k=-n, \ k\neq 0}^n$ and $\{\nu_k\}_{k=-n, \ k\neq 0}^n$ and the length l_1 of the edge incident with the root uniquely determine the masses $\{m_k^1\}_{k=1}^{n_1}$ (point masses on the edge e_1) and lengths $\{l_k^1\}_{k=0}^{n_1}$ of the subintervals on this edge.

References

- [1] F.R.Gantmakher and M.G.Krein. Oscillating matrices and kernels and vibrations of mechanical systems. AMS Chelsea Publishing, Providence, RI, 2002.
- A. F. Filimonov and A. D. Myshkis. On properties of large wave effect in classical problem bead string vibration. J. Difference Equations and Applications, 10(13-15): 1171-1175, 2004.
- [3] Che-Wei Tsao, Chun-Kong Law. The Stieltjes string and its associated nodal points. Operators and Matrices, 13(2): 363-373, 2019.
- [4] S.J. Cox, M. Embree and J.M. Hokanson. One can hear the composition of a string: experiments with an inverse eigenvalue problem. SIAM Rev., 54(1) : 157-178, 2012.
- [5] A. Morassi, G. Gladwell. Dynamical Inverse Problems: Theory and Applications. CISM Courses and Lectures 529, 1-29, 2011.
- [6] G. Gladwell. Inverse problems in vibration. SIAM Rev., 2004.
- [7] J.S. Maybee, J. Genin. Mechanical vibration trees. J. Math. Anal. Appl., 45: 746-763, 1974.