Estimate of maximum of the products of inner radii of mutually non-overlapping domains

Iryna Denega

(Department of complex analysis and potential theory, Institute of mathematics of the National Academy of Sciences of Ukraine, 3 Tereschenkivska St, 01024 Kyiv, Ukraine)

E-mail: iradenega@gmail.com

Let \mathbb{N} , \mathbb{R} be the sets of natural and real numbers, respectively, \mathbb{C} be the complex plane, $\overline{\mathbb{C}} = \mathbb{C} \bigcup \{\infty\}$ be its one point compactification, \mathbb{U} be the open unit disk in \mathbb{C} and $\mathbb{R}^+ = (0, \infty)$. Let r(B, a) be an inner radius of the domain $B \subset \overline{\mathbb{C}}$ relative to a point $a \in B$ [1–4]. The inner radius of the domain B is connected with Green's generalized function $g_B(z, a)$ of the domain B by the relations

$$g_B(z, a) = -\ln|z - a| + \ln r(B, a) + o(1), \quad z \to a,$$

$$g_B(z, \infty) = \ln|z| + \ln r(B, \infty) + o(1), \quad z \to \infty.$$

The system of points $A_n := \{a_k \in \mathbb{C}, k = \overline{1, n}\}, n \in \mathbb{N}, n \geqslant 2$, is called *n*-radial, if $|a_k| \in \mathbb{R}^+$ for $k = \overline{1, n}$ and

$$0 = \arg a_1 < \arg a_2 < \dots < \arg a_n < 2\pi.$$

Consider the following extremal problem.

Problem. For all values of the parameter $\gamma \in \mathbb{R}^+$ to find estimate of the maximum of the functional

$$J_n(\gamma) = [r(B_0, 0) r(B_\infty, \infty)]^{\gamma} \prod_{k=1}^n r(B_k, a_k),$$
(1)

where $n \in \mathbb{N}$, $n \ge 2$, $a_0 = 0$, $A_n = \{a_k\}_{k=1}^n \in \overline{\mathbb{C}}/\{0,\infty\}$ be any fixed n-radial system of different points, B_0 , B_∞ , $\{B_k\}_{k=1}^n$ be a system of mutually non-overlapping domains, $0 \in B_0 \subset \overline{\mathbb{C}}$, $\infty \in B_\infty \subset \overline{\mathbb{C}}$, $a_k \in B_k \subset \overline{\mathbb{C}}$, $k = \overline{1, n}$.

The following proposition is true.

Theorem 1. Let $n \in \mathbb{N}$, $n \geqslant 2$, $\gamma \in \mathbb{R}^+$. Then, for any fixed n-radial system of different points $A_n = \{a_k\}_{k=1}^n \in \overline{\mathbb{C}}/\{0,\infty\}$ and any mutually non-overlapping domains B_0 , B_∞ , B_k , $a_0 = 0 \in B_0 \subset \overline{\mathbb{C}}$, $\infty \in B_\infty \subset \overline{\mathbb{C}}$, $a_k \in B_k \subset \overline{\mathbb{C}}$, $k = \overline{1,n}$, the following inequalities hold

$$J_{n}(\gamma) \leqslant \begin{cases} (n+1)^{-\gamma \frac{n+1}{n+2}} \left[\prod_{k=1}^{n} r\left(B_{k}, a_{k}\right) \right]^{1-\frac{2\gamma}{n+2}} \prod_{k=1}^{n} |a_{k}|^{\frac{2\gamma}{n+2}}, & if \quad \gamma \in \left(0, \frac{n+2}{2}\right]; \\ (n+1)^{-\frac{n+1}{2}} \prod_{k=1}^{n} |a_{k}|, & if \quad \gamma > \frac{n+2}{2}. \end{cases}$$

Remark 2. If $\gamma = \frac{n+2}{2}$ and $\prod_{k=1}^{n} |a_k| \leq 1$, then from above posed Theorem 1, the following inequality holds

$$[r(B_0,0) r(B_\infty,\infty)]^{\frac{n+2}{2}} \prod_{k=1}^n r(B_k,a_k) \leqslant (n+1)^{-\frac{n+1}{2}}.$$

In this case the structure of points and domains is not important.

For any *n*-radial system of points $A_n = \{a_k\}_{k=1}^n$, $|a_k| = 1$, and any pairwise non-overlapping domains $\{B_k\}_{k=1}^n$, $a_k \in B_k \subset \overline{\mathbb{C}}$, $k = \overline{1, n}$, the inequality

$$\prod_{k=1}^{n} r(B_k, a_k) \leqslant 2^n \prod_{k=1}^{n} \alpha_k$$

is valid (see Corollary 5.1.3 [1]). In Theorem 6.11 [2] for any different points a_k on the circle $|a_k| = 1$, $k = \overline{1, n}$ $(n \ge 2)$, and any pairwise non-overlapping domains $B_k \subset \overline{\mathbb{C}}$ such that $a_k \in B_k$, $k = \overline{1, n}$, the inequality

$$\prod_{k=1}^{n} r\left(B_k, a_k\right) \leqslant \left(\frac{4}{n}\right)^n$$

is proved. Thus, from Theorem 1 we have next result.

Corollary 3. Let $n \in \mathbb{N}$, $n \geqslant 2$, $\gamma \in \mathbb{R}^+$. Then, for any system of different points $\{a_k\}_{k=1}^n$ of the unit circle $|a_k| = 1$ and any mutually non-overlapping domains B_0 , B_{∞} , B_k , $a_0 = 0 \in B_0 \subset \overline{\mathbb{C}}$, $\infty \in B_{\infty} \subset \overline{\mathbb{C}}$, $a_k \in B_k \subset \overline{\mathbb{C}}$, $k = \overline{1, n}$, the following inequalities hold

$$J_n(\gamma) \leqslant \begin{cases} (n+1)^{-\gamma \frac{n+1}{n+2}} \left(\frac{4}{n}\right)^{n-\frac{2\gamma n}{n+2}}, & \text{if } \gamma \in \left(0, \frac{n+2}{2}\right]; \\ (n+1)^{-\frac{n+1}{2}}, & \text{if } \gamma > \frac{n+2}{2}. \end{cases}$$

If $B_0 \subset \mathbb{U}$, then from the proof of the Theorem 1, the following results are valid.

Corollary 4. Let $n \in \mathbb{N}$, $n \ge 2$, $\gamma \in \mathbb{R}^+$ and $B_0 \subset \mathbb{U}$. Then, for any system of different points $\{a_k\}_{k=1}^n$ of the unit circle |z| = 1 and any mutually non-overlapping domains B_k , $a_k \in B_k \subset \overline{\mathbb{C}}$, $k = \overline{0,n}$, $a_0 = 0$, and the domains B_k , $k = \overline{1,n}$, are mirror-symmetric relative to the unit circle |z| = 1, the inequality holds

$$r^{2\gamma}(B_0, 0) \prod_{k=1}^{n} r(B_k, a_k) \le (n+1)^{-\frac{n+1}{2}}.$$

Corollary 5. Let $n \in \mathbb{N}$, $n \ge 2$, $\gamma \in \mathbb{R}^+$, R > 0 and B_0 be an arbitrary domain belonging to the open circle |w| < R. Then, for any n-radial system of different points $A_n = \{a_k\}_{k=1}^n$ such that $|a_k| = R$, $k = \overline{1,n}$, and any mutually non-overlapping domains B_k , $a_k \in B_k \subset \overline{\mathbb{C}}$, $k = \overline{0,n}$, $a_0 = 0$, and the domains B_k , $k = \overline{1,n}$, are mirror-symmetric relative to the circle |w| = R, the inequality holds

$$r^{2\gamma}(B_0, 0) \prod_{k=1}^{n} r(B_k, a_k) \leq (n+1)^{-\frac{n+1}{2}} \cdot R^{2\gamma}.$$

This work was supported by the budget program "Support of the development of priority trends of scientific researches" (KPKVK 6541230).

REFERENCES

- [1] A.K. Bakhtin, G.P. Bakhtina, Yu.B. Zelinskii. Topological-algebraic structures and geometric methods in complex analysis. Zb. prats of the Inst. of Math. of NASU, 2008. (in Russian)
- [2] V.N. Dubinin. Condenser capacities and symmetrization in geometric function theory. Birkhäuser/Springer, Basel, 2014.
- [3] G.V. Kuz'mina. Problems of extremal decomposition of the Riemann sphere. Zap. Nauchn. Sem. POMI, 276: 253–275, 2001. (in Russian)
- [4] P.M. Tamrazov. Extremal conformal mappings and poles of quadratic differentials. *Izv. Akad. Nauk SSSR Ser. Mat.*, 32(5): 1033–1043, 1968. (in Russian)