A universal coregular countable second-countable space

Taras Banakh

(Ivan Franko National University of Lviv, Ukraine) E-mail: t.o.banakh@gmail.com

Yaryna Stelmakh (Ivan Franko National University of Lviv, Ukraine) *E-mail:* yarynziya@ukr.net

A Hausdorff topological space X is called *superconnected* (resp. *coregular*) if for any nonempty open sets $U_1, \ldots, U_n \subseteq X$, the intersection of their closures $\overline{U}_1 \cap \cdots \cap \overline{U}_n$ is not empty (resp. the complement $X \setminus (\overline{U}_1 \cap \cdots \cap \overline{U}_n)$ is a regular topological space). A canonical example of a coregular superconnected space is the projective space $\mathbb{Q}P^{\infty}$ of the topological vector space

$$\mathbb{Q}^{<\omega} = \{ (x_n)_{n \in \omega} \in \mathbb{Q}^{\omega} : |\{n \in \omega : x_n \neq 0\}| < \omega \}$$

over the field of rationals \mathbb{Q} . The space $\mathbb{Q}\mathsf{P}^{\infty}$ is the quotient space of $\mathbb{Q}^{<\omega} \setminus \{0\}^{\omega}$ by the equivalence relation $x \sim y$ iff $\mathbb{Q} \cdot x = \mathbb{Q} \cdot y$.

We prove that every countable second-countable coregular space is homeomorphic to a subspace of $\mathbb{Q}\mathsf{P}^{\infty}$, and a topological space X is homeomorphic to $\mathbb{Q}\mathsf{P}^{\infty}$ if and only if X is countable, secondcountable, and admits a decreasing sequence of closed sets $(X_n)_{n\in\omega}$ such that (i) $X_0 = X$, $\bigcap_{n\in\omega} X_n = \emptyset$, (ii) for every $n \in \omega$ and a nonempty open set $U \subseteq X_n$ the closure \overline{U} contains some set X_m , and (iii) for every $n \in \omega$ the complement $X \setminus X_n$ is a regular topological space.

Using this topological characterization of $\mathbb{Q}\mathsf{P}^{\infty}$ we find topological copies of the space $\mathbb{Q}\mathsf{P}^{\infty}$ among quotient spaces, orbit spaces of group actions, and projective spaces of topological vector spaces over countable topological fields.

References

 T. Banakh, Ya. Stelmakh, A universal coregular countable second-countable space, preprint (arxiv.org/abs/2003.06293).