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Let E ,F and G be vector lattices. We say that a linear operator T : E → F is a lattice homomor-
phism if T (x ∨ y) = Tx ∨ Ty for every x, y ∈ E. A bilinear map Φ : E × F → G is said to be positive
if |Φ(x, y)| ≤ Φ(|x|, |y|) for all x ∈ E and y ∈ F . The bilinear map Φ : E × F → G is said to be
lattice bilinear map (or lattice bimorphism) whenever it is separately lattice homomorphisms for each
variable or equivalently, |Φ(x, y)| = Φ(|x|, |y|) for all x ∈ E and y ∈ F . Let E and F be Archimedean
vector lattices. A bilinear map T : E × E → F is called an orthosymmetric if x ∧ y = 0 implies
T (x, y) = 0 for all x, y ∈ E. A vector lattice E is called Dedekind complete if every non-empty subset
of E which is bounded from above has a supremum. A Dedekind complete vector lattice M is said to
be a Dedekind completion of the vector lattice E whenever E is Riesz isomorphic to a majorizing order
dense Riesz subspace of M . Denote by Eδ the Dedekind completion of E. Every Archimedean vector
lattice has a unique Dedekind completion. A vector lattice E is said to be universally complete if E
is Dedekind complete and every pairwise disjoint positive vectors in E has a supremum in E. Every
Archimedean vector lattice E has a universal completion Eu. It means that there exists a unique (up
to a lattice isomorphism) universally complete vector lattice Eu such that E is Riesz isomorphic to
an order dense Riesz subspace of Eu.

Definition 1. Let E and F be Archimedean vector lattices. A bilinear map T : E ×E → F is called
an almost orthosymmetric if x ∧ y = 0 implies T (x, y) ∧ T (y, x) = 0 for all x, y ∈ E, [13].

Every orthosymmetric bilinear map is an almost orthosymmetric, but the converse is not always
true.

Let E be an Archimedean vector lattice and F be a Dedekind complete vector lattice.
In this talk, we show that if T : E ×E → F is an almost orthosymmetric lattice bimorphism, then

extension of T , T∼ : Eδ × Eδ → F , is an almost orthosymmetric lattice bimorphism.

Theorem 2. Let E be an Archimedean vector lattice and let Eδ be its Dedekind completion and
let F be a Dedekind complete vector lattice. If Φ : E × E → F is an almost orthosymmetric lattice
bimorphism, then Φ can be extended to an almost orthosymmetric lattice bimorphism Ψ : Eδ×Eδ → F .
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