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In this paper, Theorem 1 and Theorem 2 on weighted mean summability methods of Fourier se-
ries have been generalized for |A, pn|k summability factors of Fourier series by using di�erent matrix
transformations. New results have been obtained dealing with some other summability methods.

Theorem 1. Let (pn) be a sequence such that

Pn = O(npn) (1)

Pn∆pn = O(pnpn+1). (2)

If ϕ1(t) is of bounded variation in (0, π) for any x ∈ (−π, π) and (λn) is a sequence such that

∞∑
n=1

1

n
|λn|k <∞ (3)

and

∞∑
n=1

|∆λn| <∞, (4)

then the series
∑
Cn(t)λnPn

npn
is summable | N̄ , pn |k, k ≥ 1

(taken from [2]).

Theorem 2. If the sequences (pn) and (λn) satisfy the conditions (1)-(4) of Theorem 1 and

Bn ≡
n∑
v=1

vav = O(n), n→∞, (5)

then the series
∑
an

λnPn
npn

is summable | N̄ , pn |k, k ≥ 1(taken from [2]).

Lemma 3. If ϕ1(t) is of bounded variation in (0, π) for any x ∈ (−π, π), then∑
vCv(x) = O(n) as n→∞ (6)

(taken from [11]).

Lemma 4. If the sequence (pn) such that conditions (1) and (2) of Theorem 1 are satis�ed, then

∆

{
Pn
pnn2

}
= O

(
1

n2

)
(7)

(taken from [2]).
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