Spaces of primitive elements in dual modules over Steenrod algebra

Alexander N. Vasilchenko

(19 Cheluskintsev, apt.32, Samara, phone +78463027287, +79372076904) *E-mail:* vass-alexandr@yandex.ru

Presented work studies subspace of all primitives PB(n) in $B(n) = (A(n-1)/A(n))^*$, with respect to the coaction $\phi_n^*: B(n) \to A^* \otimes B(n)$, where the primitives are those elements $\alpha \in B(n)$ for which $\phi_n^*(\alpha) = 1 \otimes \alpha$, here A^* is dual Steenrod algebra. Modules B(n) were studied in [5, 6, 7]. Works [1, 2, 3, 4, 7] contain all useful notions and results: [3] studies structures of modules over Steenrod algebra A and their duals in dual Steenrod algebra A^* [2, 4]; [1] studies modules A(n) over A generated by annihilators of cohomology classes with degrees no greater then n and $A(n)^*$ is the corresponding dual module of A(n); In [5, 7], $A(n)^+$ is defined as annihilators of cohomology operations with excess greater then n, proved that as vector space over Z_p it is generated by all monomials of A^* with multiplicity no greater then n and $A(n)^+$ can be considered both left and right comodule over A^* . The filtration described in [6] Theorem 1 property 2 and 3 yields $PB(n) = \bigcup_t PB(n)_t$ and $PB(n)_t = \bigoplus_s PB(n)_t^s$, where s is the number of τ operations and where t is the biggest index of such operations. By property 4 Theorem 1 follows: $P(B(n)_t/B(n)_{t-1}) \simeq PB(n-1)_{t-1}$. Found properties of $PB(n)_t$ can be shortly summarized here:

Theorem 1 (Properties of $PB(n)_t$ spaces). (1) $PB(n) = \bigcup_t PB(n)_t$ and the following diagram is commutative with exact rows and columns:

$$0 \longrightarrow PB(n)_{t-1} \stackrel{i_{t-1}}{\longrightarrow} PB(n)_t \stackrel{\pi_t}{\longrightarrow} PB(n-1)_{t-1}$$

$$0 \longrightarrow B(n)_{t-1} \stackrel{i_{t-1}}{\longrightarrow} B(n)_t \stackrel{\pi_t}{\longrightarrow} B(n-1)_{t-1} \longrightarrow 0$$

$$\downarrow^{\phi_n} \qquad \qquad \downarrow^{\phi_n} \qquad \qquad \downarrow^{\phi_{n-1}}$$

$$0 \longrightarrow A^* \otimes B(n)_{t-1} \stackrel{Id \otimes i_{t-1}}{\longrightarrow} A^* \otimes B(n)_t \stackrel{Id \otimes \pi_t}{\longrightarrow} A^* \otimes B(n-1)_{t-1} \longrightarrow 0$$

Here all denoted maps are induced by maps defined in Theorem 1 property 4 [6].

- (2) For even $n: PB(n)_{-1} = PB(n)_0 = \langle \xi_1^{n/2} \rangle$; for odd $n: PB(n)_0 = \langle \xi_1^{n-\frac{1}{2}} \tau_0 \rangle$.
- (3) $PB(n)_t = \bigoplus_s PB(n)_t^s$ and the following diagram is commutative with exact rows and columns:

Here all denoted maps are induced ones as in (1).

(4) Composition of maps

$$PB(n)_t^{s,deg} \longrightarrow B(n)^{s,deg} \longrightarrow B(n)^{s,deg}/(I \cap B(n)^{s,deg})$$

is monomorphism, here $I = \langle \xi_2, \xi_3, \xi_4, \cdots \rangle$ is ideal in A^* , where deg is degree. The dimension of $B(n)^{s,deg}/(I \cap B(n)^{s,deg})$ is less or equal 1.

- (5) $dim(PB(n)_t^{s,deg}) \leq 1$.
- (6) For map $PB(2m+1)_t \xrightarrow{\pi_t} PB(2m)_{t-1}$, $\xi_1^m \in Im(\pi_0)$ and for t > 0: $\xi_1^m \notin Im(\pi_t)$; if s > 1 and $\alpha \in PB(n)_t^s$ then $\alpha = \alpha'\tau_0$.
- (7) Denote $J(n)^{s,deg} = B(n)^{s,deg}/(I \cap B(n)^{s,deg})$ then the following diagram is commutative:

These properties may be useful to find bases of $PB(n)_t^{s,deg}$ spaces and PB(n) basis as result.

References

- [1] H. Cartan. Algebres d'Eilenberg-MacLane at Homotopie. Seminare Cartan ENS, 7e, 1954–1955.
- [2] J. Milnor. The Steenrod algebra and its dual. Annals of Mathematics, 67: 150-171, 1958.
- [3] J. Milnor, J. Moore. On the structure of Hopf algebras. Annals of Mathematics, 81: 211-264, 1965.
- [4] N. Steenrod, D. B. A. Epstein. Cohomological Operations, Princeton University Press, 1962.
- [5] А. Н. Васильченко. Свойства дуальных модулей над алгеброй Стинрода. Abstracts of the International Conference "Geometry in Odessa" 2014, Odessa the 26th of May the 31st of May 2014: p.26
- [6] А. Н. Васильченко. Свойства дуальных модулей над алгеброй Стинрода. Abstracts of the International scientific conference "Algebraic and geometric methods of analysis" 2017, Odessa the 31st of May the 6 June 2017: p.96
- [7] А. Н. Васильченко. Свойство дуальных модулей над алгеброй Стинрода. Вестник СамГУ 7(118): 9-16, 2014.