The commutator and centralizer of Sylow subgroups of alternating and symmetric groups, its minimal generating set

Ruslan Viacheslavovich Skuratovskii

(Ukraine, Kiev) *E-mail:* ruslcomp@mail.ru

Given a permutational wreath product sequence of cyclic groups [1, 3] of order 2 we research a commutator width of such groups and some properties of its commutator subgroup. Commutator width of Sylow 2-subgroups of alternating group A_{2^k} , permutation group S_{2^k} and $C_p \wr B$ were founded. The result of research was extended on subgroups $(Syl_2A_{2^k})'$, p > 2. The paper presents a construction of commutator subgroup of Sylow 2-subgroups of symmetric and alternating groups. Also minimal generic sets of Sylow 2-subgroups of A_{2^k} were founded. Elements presentation of $(Syl_2A_{2^k})'$, $(Syl_2S_{2^k})'$ was investigated. We prove that the commutator width [2] of an arbitrary element of a discrete wreath product of cyclic groups C_{p_i} , $p_i \in \mathbb{N}$ is 1.

Lemma 1. For any group B and integer $p \ge 2$, $p \in \mathbb{N}$ if $w \in (B \wr C_p)'$ then w can be represented as the following wreath recursion

$$w = (r_1, r_2, \dots, r_{p-1}, r_1^{-1} r_2^{-1} \dots r_{p-1}^{-1} \prod_{j=1}^k [f_j, g_j]),$$

where $r_1, \ldots, r_{p-1}, f_i, g_i \in B$, and $k \leq cw(B)$.

Lemma 2. An element $(g_1, g_2)\sigma^i \in G'_k$ iff $g_1, g_2 \in G_{k-1}$ and $g_1g_2 \in B'_{k-1}$.

Lemma 3. For any group B and integer $p \ge 2$ inequality

$$cw(B \wr C_p) \le \max(1, cw(B))$$

holds.

Corollary 4. If $W = C_{p_k} \wr \ldots \wr C_{p_1}$ then for $k \ge 2 \ cw(W) = 1$.

Corollary 5. Commutator width $cw(Syl_p(S_{p^k})) = 1$ for prime p and k > 1 and commutator width $cw(Syl_p(A_{p^k})) = 1$ for prime p > 2 and k > 1.

Theorem 6. Elements of $Syl_2S'_{2^k}$ have the following form $Syl_2S'_{2^k} = \{[f, l] \mid f \in B_k, l \in G_k\} = \{[l, f] \mid f \in B_k, l \in G_k\}.$

Theorem 7. Commutator width of the group $Syl_2A_{2^k}$ equal to 1 for $k \ge 2$.

Proposition 8. The subgroup $(syl_2A_{2k})'$ has a minimal generating set of 2k-3 generators.

$\operatorname{References}$

- R. Skuratovskii, Generators and relations for Sylows p-subgroup of group S_n. (in ukranian) Naukovi Visti KPI. 2013, N. 4 pp. 94-105.
- [2] Alexey Muranov, Finitely generated infinite simple groups of infinite commutator width. arXiv:math/0608688v4 [math.GR] 12 Sep 2009.
- [3] R. V. Skuratovskii, Structure and minimal generating sets of Sylow 2-subgroups of alternating groups. Source: https://arxiv.org/abs/1702.05784v2