Kinematic renormalization of energy in the gravity

Samokhvalov S. E.

(DSTU, Kamyanske, Ukraine) E-mail: serg_samokhval@ukr.net

The Lagrangian in the theory of gravity in the affine frame (TGAF) [1] is

$$L_{\gamma} = \delta^{\mu\nu}_{ab} g^{bd} \gamma^a_{\mu c} \gamma^c_{\nu d}, \tag{1}$$

(2)

where $\delta^{\mu\nu}_{ab}$ is the alternator, $e_a = h^{\mu}_a \partial_{\mu}$ is the affine frame in the Riemann space, and $g_{ab} = e_a \cdot e_b$, γ^a_{bc} are coefficients of the torsion-free and metric-compatible affine connection in the affine frame e_a . Under GL^g -transformations $e'_a = L^{a'}_a e_{a'}$ Lagrangian L_{γ} is transformed by the rule:

$$L_{\gamma'} = L_{\gamma} + \nabla_{\sigma} \Delta V^{\sigma},$$

where $\Delta V^{\sigma} = \delta^{\sigma\nu}_{ab} g^{bd} \partial_{\nu} L^{a}_{c'} L^{c'}_{d}$. Transformation (2) is canonical transformation and don't changes the equations of motions – Einstein equations:

$$G_a^{\mu} \equiv -\nabla_{\sigma} B_a^{\mu\sigma} - t_a^{\mu} = \tau_a^{\mu}, \tag{3}$$

but changes energy-momentum tensor of the gravitational field t_a^{μ} and the superpotential $B_a^{\mu\sigma}$ of the complete energy-momentum tensor of the gravitational and matter fields $T_a^{\mu} = t_a^{\mu} + \tau_a^{\mu}$:

$$t_a^{\prime\mu} = t_a^{\mu} - \frac{1}{\sqrt{-g}} \partial_{h_{\mu}^a} (\sqrt{-g} \nabla_{\sigma} \Delta V^{\sigma}), \tag{4}$$

$$B_a^{\prime\mu\nu} = B_a^{\mu\nu} + \partial_{\partial_\nu h^a_\mu} \nabla_\sigma \Delta V^\sigma.$$
⁽⁵⁾

This changing permits to renormalize the complete energy by changing general reference frames.

References

 S. E. Samokhvalov. General reference frames and definition of energy in theory of gravity (in Ukrainian). Math. Modelling., 2(35), 2016.