Representing trees of finite ultrametric spaces and weak similarities

E. Petrov

(Function theory department, Institute of Applied Mathematics and Mechanics of NASU, Dobrovolskogo str. 1, Slovyansk 84100, Ukraine) *E-mail:* eugeniy.petrov@gmail.com

An *ultrametric* on a set X is a function $d: X \times X \to \mathbb{R}^+$, $\mathbb{R}^+ = [0, \infty)$, such that for all $x, y, z \in X$:

- (i) d(x,y) = d(y,x),
- (ii) $(d(x,y) = 0) \Leftrightarrow (x = y),$
- (iii) $d(x, y) \le \max\{d(x, z), d(z, y)\}.$

The pair (X, d) is called an *ultrametric space*. If condition (iii) is omitted, then (X, d) is a *semimetric space*, see [1]. The *spectrum* of a semimetric space (X, d) is the set

$$\operatorname{Sp}(X) = \{ d(x, y) \colon x, y \in X \}.$$

Recall that a graph is a pair (V, E) consisting of a nonempty set V and a (probably empty) set E elements of which are unordered pairs of different points from V. For a graph G = (V, E), the sets V = V(G) and E = E(G) are called the set of vertices and the set of edges, respectively. A connected graph without cycles is called a tree. A tree T may have a distinguished vertex called the root; in this case T is called a rooted tree. With every finite ultrametric space (X, d) it is possible to associate a labeled rooted tree T_X , which is called a representing tree of the space X, see, for example, [2, P. 109].

Definition 1. Let T_1 and T_2 be rooted trees with the roots v_1 and v_2 respectively. A bijective function $\Psi: V(T_1) \to V(T_2)$ is an isomorphism of T_1 and T_2 if

$$(\{x, y\} \in E(T_1)) \Leftrightarrow (\{\Psi(x), \Psi(y)\} \in E(T_2))$$

for all $x, y \in V(T_1)$ and $\Psi(v_1) = v_2$. If there exists an isomorphism of rooted trees T_1 and T_2 , then we will write $T_1 \simeq T_2$.

Definition 2. Let (X, d) and (Y, ρ) be semimetric spaces. A bijective mapping $\Phi: X \to Y$ is a *weak similarity* if there exists a strictly increasing bijection $f: \operatorname{Sp}(X) \to \operatorname{Sp}(Y)$ such that the equality

$$f(d(x,y)) = \rho(\Phi(x), \Phi(y))$$

holds for all $x, y \in X$. If $\Phi: X \to Y$ is a weak similarity, then we write $X \stackrel{\text{w}}{=} Y$ and say that X and Y are *weakly similar*.

The notion of weak similarity of semimetric spaces was introduced in [3] is a slightly different form, where also some properties of these mappings were studied.

Denote by \mathfrak{R} the class of finite ultrametric spaces X for which T_X has exactly one inner node at each level except the last level. The rooted tree T_X without the labels we will denote by \overline{T}_X .

The next theorem gives a description of finite ultrametric spaces for which the isomorphism of representing trees implies the weak similarity of the spaces.

Theorem 3 ([2]). Let X be a finite ultrametric space. Then the following statements are equivalent. (i) The implication $(\overline{T}_X \simeq \overline{T}_Y) \Rightarrow (X \stackrel{w}{=} Y)$ holds for every finite ultrametric space Y. (ii) $X \in \mathfrak{R}$.

Denote by \mathfrak{D} the class of all finite ultrametric spaces X such that the different internal nodes of T_X have the different labels. It is clear that \mathfrak{R} is a subclass of \mathfrak{D} . A question arises whether there exist finite ultrametric spaces $X, Y \in \mathfrak{D}$ which do not belong to the class \mathfrak{R} and for which the isomorphism of \overline{T}_X and \overline{T}_Y implies $X \stackrel{\text{w}}{=} Y$.

Let us define a rooted tree T with n levels by the following two conditions:

(A) There is only one inner node at the level k of T whenever k < n-1.

(B) If u and v are different inner nodes at the level n-1 then the numbers of offsprings of u and v are equal.

Denote by \mathfrak{T} the class of all finite ultrametric spaces X for which T_X satisfies conditions (A) and (B).

Theorem 4 ([2]). Let $X \in \mathfrak{D}$ be a finite ultrametric space. Then the following statements are equivalent.

(i) The implication $(\overline{T}_X \simeq \overline{T}_Y) \Rightarrow (X \stackrel{\text{w}}{=} Y)$ holds for every finite ultrametric space $Y \in \mathfrak{D}$. (ii) $X \in \mathfrak{T}$.

References

- [1] L. M. Blumenthal. Theory and applications of distance geometry, Oxford, Clarendon Press, 1953.
- [2] E. Petrov. Weak similarities of finite ultrametric and semimetric spaces. p-Adic Numbers, Ultrametric Analysis and Applications, 10(2): 108-117, 2018.
- [3] O. Dovgoshey, E. Petrov. Weak similarities of metric and semimetric spaces. Acta Mathematica Hungarica 141(4): 301-319, 2013.