Deformation of functions on orientable surfaces by symplectic diffeomorphisms

Sergiy Maksymenko

(Institute of Mathematics of NAS of Ukraine, Tereshchenkivs'ka, str. 3, Kyiv, 01004, Ukraine) *E-mail:* maks@iamth.kiev.ua

Let M be a compact orientable surface and ω be a volume from M. We will study the right action of the group $Symp(M, \omega)$ of symplectic diffeomorphisms on the space $C^{\infty}(M, \mathbb{R})$ of smooth functions on M.

Let $f: M \to \mathbb{R}$ be a C^{∞} Morse function, H be the Hamiltonian vector field of f with respect to ω , and $\mathcal{Z}_{\omega}(f)$ be the set of all C^{∞} -functions $M \to \mathbb{R}$, taking constant values along orbits of H. Then $\mathcal{Z}_{\omega}(f)$ is an abelian group with respect to point wise addition.

Further, let $\mathcal{S}(f,\omega) = \{h \in Symp(M,\omega) \mid f \circ h = f\}$ be the stabilizer of f with respect to the right action of the group $Symp(M,\omega)$. Thus $\mathcal{S}(f,\omega)$ consists of diffeomorphism mutually preserving f and ω . Let also $\mathcal{S}_0(f,\omega)$ be the identity path component of $\mathcal{S}(f,\omega)$ with respect to C^{∞} topology.

We will prove that there exists a canonical epimorphism of topological groups:

$$\phi: \mathcal{Z}_{\omega}(f) \to \mathcal{S}_0(f, \omega),$$

which is an isomorphism whenever f has at least one saddle critical point, and an infinite cyclic covering otherwise.

In particular, $S_0(f, \omega)$ is an abelian group, being either contractible of homotopy equivalent to the circle.

References

 Sergiy Maksymenko, Symplectomorphisms of surfaces preserving a smooth function, I. Topology and its Applications, vol. 235, (2018) 275-289