On the existence of a global diffeomorphism between Fréchet spaces

Kaveh Eftekharinasab

(Institute of mathematics of NAS of Ukraine) E-mail: kaveheft@gmail.com

We provide sufficient conditions for the existence of a global diffeomorphism between tame Fréchet spaces. We prove a version of Mountain Pass theorem which plays a key ingredient in the proof of the main theorem. We apply differentiability in the sense of Micheal and Bastiani.

Theorem 1 (The Mountain Pass Theorem). Let F be a Fréchet space and $\phi: F :\to \mathbb{R}$ a C^1 -functional satisfying the Palais-Smale condition. Assume $f \in F$ satisfies $\inf_{n \in \mathbb{N}} || f ||^n > r > 0$ for a real number r and the geometric condition $\inf_{p \in S(0,r)} I(p) > \max\{\gamma(0), \gamma(f)\} = a$, where S(0,r) is a sphere of the radius r. Then ϕ has a critical value $c \geq a$ which can be characterized as

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} \phi(\gamma(t)).$$

Where $\Gamma = \{ \gamma \in C([0,1]; F) : \gamma(0) = 0, \gamma(1) = f \in F \}.$

Let E and F be tame Fréchet spaces and $\tau : E \to F$ a smooth tame map. Assume that a c^1 -functional $\iota(x)$ is such that it and and its derivative $\iota'(y)$ are zero if and only if x and y are zero. In addition, we suppose that the derivative $\tau'(e)f = k$ has a unique solution $f = \nu(e)k$ for all $e \in E$ and all k, and the family of inverses $\nu : E \times F \to E$ is a smooth tame map.

Theorem 2. Assume that a smooth tame map $\tau : E \to F$ and a C^1 -functional ι on F are as above. If the following conditions hold

C1: for any $f \in F$ the functional $j: E \to \mathbb{R}$ given by

$$j(e) = \iota(\tau(e) - f)$$

satisfies the Palais-Smale condition;

C2: there exist positive real numbers a, b and c such that for f in the disk D(0, a)

$$\iota(f) \geqq c\alpha^b \text{ where } \alpha = \sup_{n \in \mathbb{N}} \| f \|^n .$$
(1)

Then τ is a diffeomorphism.