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The notion of Stieltjes string was introduced in [1, Supplement II]. Like in [1] we suppose the string
to be a thread, i. e. a string of zero density, bearing a �nite number of point masses. Assume that the
string consists of two parts, which are joined at one end and free to move in the direction orthogonal to
the equlibrium position of the string at the other end. Starting indexing from the free ends, nj masses

m
(j)
k > 0 , k = 1, ...nj , are positioned on the j-th part, j = 1, 2, which divide the j-th part into nj + 1

substrings, denoted by l
(j)
k > 0, k = 0, ...nj , again starting indexing from the free end. In particular,

l
(j)
0 is the distance on the j-th part between the free endpoint and m

(j)
1 , l

(j)
1 for k = 1, ..., nj − 1 is the

distance between m
(j)
k and m

(j)
k+1, and l

(j)
nj is the distance on the j-th thread between the joined end

point and m
(j)
nj . The tension of the thread is assumed to be equal to 1.

Considering small transverse vibrations of such string like in [2, p.55] we obtain the following spectral
problem
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where u
(j)
k is the amplitude of vibrations of the massm

(j)
k , z is the spectral parameter. Also we consider

following two problems for the parts of the string:
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We denote by {µk}nk=1 where n = n1 + n2 the spectrum of problem (1)�(4) , and by {ν(j)k }
nj

k=1,

j = 1, 2 the spectra of problems (5)�(7). Let {ξk}nk=1 = {ν(1)k }
n1
k=1 ∪ {ν

(2)
k }

n2
k=1 be indexed such that

ξk ≤ ξk+1.
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Location of the spectra is described by

Theorem 1.The sequences {µk}nk=1 and {ξk}nk=1 interlace as follows:
1) 0 = µ1 < ξ1 ≤ µ2 ≤ ... ≤ ξn;
2) µk = ξk−1 if and only if µk = ξk;
3) the multiplicity of ξk does not exceed 2.

The corresponding inverse problem lies in �nding the masses {m(j)
k }

nj

k=1 and subintervals {l(j)k }
nj

k=1
(j = 1, 2) using the three spectra, i.e. spectra of problems (1)�(4), (5)�(7) with j = 1 and (5)�(7) with
j = 2.

Theorem 2.Let mj > 0 (j = 1, 2) be given together with the numbers

{µk}nk=1, {ν
(1)
k }

n1
k=1 and {ν(2)k }

n2−1
k=1 (µk < µk′ , ν
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k′ for k < k′) {ξk}n−1k=1 = {ν(1)k }

n1
k=1

⋃
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which satisfy the following conditions:

0 = µ1 < ξ1 < µ2 < ξ2 < ... < ξn−1 < µn.

Then there exists a unique collection of sequences of positive numbers {{m(j)
k }

nj

k=1,

(j = 1, 2), {l(j)k }
nj

k=1 (j = 1, 2)} such that
nj∑
k=1

m
(j)
k = mj, {µk}nk=1 is the spectrum of problem

(1)�(4), {ν(1)k }
n1
k=1 is the spectrum of problem (5)�(7) with j = 1, {ν(2)k }

n2−1
k=1 is a sequence of eigenvalues

(a part of the spectrum) of problem (5)�(7) with j = 2.

The method of recovering {{m(j)
k }

nj

k=1, (j = 1, 2), {l(j)k }
nj

k=1 (j = 1, 2)} is similar to that in [3]
(see also [2], p. 222).
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