Problem on non-overlapping polycylindrical domains with poles on the boundary of a polydisk

Iryna Denega

(Institute of mathematics of the NAS of Ukraine, Department of complex analysis and potential theory, Tereschenkivska 3, Kiev-4, 01004, Ukraine)

E-mail: iradenega@gmail.com

The goal of the present work is the study of the problem of a product of powers of the generalized conformal radii of polycylindrical nonoverlapping domains with poles on the boundary of a polydisk. The spatial analogs of a number of known results concerning the nonoverlapping domains on a plane were obtained in [1], where a generalization of the notion of inner radius was given. Namely, the notion of harmonic radius of the spatial domain $B \subset \mathbb{R}^n$ relative to some internal point was introduced. Work [1] was the essential break-through in the consideration of nonoverlapping domains in the spatial case. Then, work [2] advanced an approach that allowed the transfer of some results known in the case of a complex plane onto \mathbb{C}^n . At the same time, the problems of nonoverlapping domains in the case of a complex plane represent a sufficiently well-developed trend of the geometric theory of functions of complex variable (see, e.g., [1-6]).

Let \mathbb{N} , \mathbb{R} and \mathbb{C} be the sets of natural, real, and complex numbers, respectively, and $\mathbb{R}^+ = (0, \infty)$. Let $\overline{\mathbb{C}}$ be a Riemann sphere (extended complex plane). It is well known that $\mathbb{C}^n = (\underbrace{\mathbb{C} \times \mathbb{C} \times \ldots \times \mathbb{C}}_{n-\text{times}}),$

$$n \in \mathbb{N}$$
. $\overline{\mathbb{C}}^n = \underbrace{(\overline{\mathbb{C}} \times \overline{\mathbb{C}} \times \ldots \times \overline{\mathbb{C}})}_{n-\text{times}}$ is a compactification of the space \mathbb{C}^n (see, e.g., $[3, 4, 5]$), where

the set of infinitely remote points has the complex dimension n-1. Let $[D]^n$ (Cartesian degree of a

domain $D \in \overline{\mathbb{C}}$) denote the Cartesian product $\underbrace{D \times D \times \ldots \times D}_{n-\text{times}}$, and let $[d]^n$ (Cartesian degree of a point $d \in \overline{\mathbb{C}}$) denote the point with $\overline{\mathbb{C}}^n$, which have the coordinates $\underbrace{(d, \ldots, d)}_{n-\text{times}}$. It is clear that $\mathbb{C}^1 = \mathbb{C}$,

 $\overline{\mathbb{C}}^1 = \overline{\mathbb{C}}$. The topology in $\overline{\mathbb{C}}^n$ is introduced like in a Cartesian product of topological spaces. In this

topology, $\overline{\mathbb{C}}^n$ is compact (see [3, 4, 5]). The domain $\mathbb{B} = B_1 \times B_2 \times \ldots \times B_n \subset \overline{\mathbb{C}}^n$, where each domain $B_k \subset \overline{\mathbb{C}}$, $k = \overline{1, n}$, is called a polycylindrical domain in $\overline{\mathbb{C}}^n$ (see [3]). The domains B_k , $k = \overline{1, n}$, are called coordinate domains of the domain \mathbb{B} .

Let r(B, a) be inner radius of the domain $B \subset \overline{\mathbb{C}}$ with respect to the point $a \in B$. The generalized inner radius of the polycylindrical domain \mathbb{B} relative to the point $\mathbb{A} = (a_1, a_2, \dots, a_n) \in \mathbb{B}, a_k \in B_k$ $k = \overline{1, n}$, is

$$R(\mathbb{B},\mathbb{A}) := \left(\prod_{k=1}^{n} r(B_k, a_k)\right)^{\frac{1}{n}},$$

where the quantities $r(B_k, a_k)$, $k = \overline{1, n}$, mean the inner radii of the coordinate domains B_k relative to a_k .

 a_k . Let $\mathbb{U}^n = [U]^n$, where $U = \{z \in \mathbb{C} : |z| < 1\}$ (unit disk in the complex plane \mathbb{C}). By Γ_n we denote the skeleton of the polydisk \mathbb{U}^n i.e., the set of points $\mathbb{A} = (a_1, a_2, \dots, a_n) \subset \mathbb{C}^n$, $|a_s| = 1$, $s = \overline{1, n}$.

The system $\{\mathbb{B}_k\}_{k=1}^m \left(\mathbb{B}_k = B_1^{(k)} \times \ldots \times B_n^{(k)}, k = \overline{1, m}\right)$ is called a system of nonoverlapping polycylindrical domains, if, for every fixed p_0 , $p_0 = \overline{1, n}$, the system of domains $\left\{B_{p_0}^{(k)}\right\}$, $k = \overline{1, m}$, is a system of nonoverlapping domains on $\overline{\mathbb{C}}$.

Let $m \in \mathbb{N}$, $m \ge 2$. The system of points $\Delta_m := \{a_k\}_{k=1}^m$, $a_k \in \mathbb{C}$, is called *m*-radial, if $|a_k| \in \mathbb{R}^+$

for $k = \overline{1, m}, 0 = \arg a_1 < \arg a_2 < \ldots < \arg a_m < 2\pi$. The system of points $\{\mathbb{A}_k\}_{k=1}^m \left(\mathbb{A}_k = \left(a_1^{(k)}, a_2^{(k)}, \ldots, a_n^{(k)}\right) \in \mathbb{C}^n, \quad k = \overline{1, m}\right)$, is called radial in the space \mathbb{C}^n , if, for every fixed p_0 the sequence $\left\{a_{p_0}^{(k)}\right\}$, $k = \overline{1, m}$, is an *m*-radial system of points on the corresponding complex plane \mathbb{C} .

We will consider radial systems of points in the space \mathbb{C}^n of the form

$$\{\mathbb{A}_k\}_{k=1}^m, \quad \mathbb{A}_k = \left(a_1^{(k)}, a_2^{(k)}, \dots, a_n^{(k)}\right) \in \mathbb{C}^n, \quad k = \overline{1, m}, \quad a_{p_0}^{(1)} > 0, \quad p_0 = \overline{1, n}, \\ \arg a_{p_0}^{(k)} < \arg a_{p_0}^{(k+1)}, \quad k = \overline{1, m-1}, \quad \arg a_{p_0}^{(m)} < 2\pi.$$

$$(1)$$

We introduce the following notations

$$\alpha_{p_0}^{(1)} := \frac{1}{\pi} \left(\arg a_{p_0}^{(2)} - \arg a_{p_0}^{(1)} \right), \quad \alpha_{p_0}^{(2)} := \frac{1}{\pi} \left(\arg a_{p_0}^{(3)} - \arg a_{p_0}^{(2)} \right), \dots, \alpha_{p_0}^{(m)} := \frac{1}{\pi} \left(2\pi - \arg a_{p_0}^{(m)} \right).$$

et
$$F_{\delta}(x) = 2^{x^2 + 6} \cdot x^{x^2 + 2 - 2\delta} \cdot (2 - x)^{-\frac{1}{2}(2 - x)^2} (2 + x)^{-\frac{1}{2}(2 + x)^2},$$

Le

$$F_{\delta}(x) = 2^{x^2+6} \cdot x^{x^2+2-2\delta} \cdot (2-x)^{-\frac{1}{2}(2-x)^2} (2+x)^{-\frac{1}{2}(2+x)} x \in (0,2], \quad \delta \in [0,1], \quad F_{\delta}(x) \subset \overline{\mathbb{C}}.$$

Then the following proposition is valid.

Theorem 1. [6] Let $m, n \in \mathbb{N}$, $m \ge 7$, $\gamma \in (0, \gamma_0]$, $\gamma_0 = \sqrt[3]{m}$ and $\delta \in [0; 0, 7]$. Then, for any radial system of points of the form (1) $\{\mathbb{A}_k\}_{k=1}^m = \{a_p^{(k)}\}_{k=1}^m \in \overline{\mathbb{C}}^n$, $p = \overline{1, n}$, such that $\mathbb{A}_k \in \Gamma_n$, $k = \overline{1, m}$, and for any collection of nonoverlapping polycylindrical domains \mathbb{B}_k , $\mathbb{A}_k \in \mathbb{B}_k \subset \overline{\mathbb{C}}^n$, $k = \overline{0, m}$, $\mathbb{A}_0 \in \mathbb{B}_0 \subset \overline{\mathbb{C}}^n$, the following inequality holds

$$R^{\gamma}(\mathbb{B}_{0},\mathbb{A}_{0})\prod_{k=1}^{m}R(\mathbb{B}_{k},\mathbb{A}_{k}) \leqslant \gamma^{-\frac{\delta \cdot m}{2}} \cdot \left(\prod_{k=1}^{m}\prod_{p=1}^{n}\alpha_{p}^{(k)}\right)^{\frac{1}{n}} \cdot \left[F_{\delta}\left(\frac{2}{m}\sqrt{\gamma}\right)\right]^{\frac{m}{2}}$$

One of the extreme systems is the system

$$\{\mathbb{B}_k\}_{k=0}^m = \left\{ [B_0^{(0)}]^n, [B_1^{(0)}]^n, [B_2^{(0)}]^n, \dots, [B_m^{(0)}]^n \right\}, \\ \{\mathbb{A}_k\}_{k=0}^m = \left\{ [0]^n, \left[b_1^{(0)}\right]^n, \left[b_2^{(0)}\right]^n, \dots, \left[b_m^{(0)}\right]^n \right\},$$

where the domains $B_k^{(0)}$ and the points $b_k^{(0)}$, $k = \overline{1, m}$, are, respectively, the circular domains and the poles of the quadratic differential

$$Q(w)dw^{2} = -\frac{(n^{2} - \gamma)w^{n} + \gamma}{w^{2}(w^{n} - 1)^{2}} dw^{2}.$$

References

- [1] V. N. Dubinin and E. G. Prilepkina. On the extreme partition of spatial domains. Zap. Nauch. Sem. POMI, 254: 95-107, 1998.
- [2] A. K. Bakhtin. A generalization of some results of the theory of one-sheeted functions onto multidimensional complex spaces. Dop. NAN Ukr., (3): 7-11, 2011.
- [3] B. V. Shabat. Introduction to Complex Analysis, Part II, Amer. Math. Soc. Providence, RI, 1992.
- [4] E. M. Chirka. Complex Analytic Sets, Springer : Berlin, 1989.
- [5] B. A. Fuks. Introduction to the Theory of Analytic Functions of Several Complex Variables, Amer. Math. Soc. Providence, RI, 1963.
- [6] Iryna Denega, Yaroslav Zabolotnyi. Problem of nonoverlapping polycylindrical domains with poles on the boundary of a polydisk. Journal of Mathematical Sciences, 227(1): 26-32, 2017.