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Starting of fact that the Mukai-Fourier transform is an equivalence of derive categories(with arbitrary

decorations: +,−,b), is feasible construct a Fourier-Mukai equivalence given for

DCoh(T∨A) ∼= DCoh(A∨ ×H)

, where exist a distinguished deformation of the category DCoh(T∨A), which is a non-commutative
deformation of T∨A, de�ned by a natural symplectic form, that is their quatization [1].

Then T∨o A, results a 1-parameter deformation Ab, of the space A∨ ×H, to an a�ne bundle over
A∨, classi�ed by H1(A∨;O⊗H). Then the Fourier-Mukai equivalence relative to the projection T∨o A,
deforms an equivalence between the deformed categories DCohDA −mod, and DCoh(A)b.

Then we use the deformed version of the Mukai-Fourier transform that results on DA− modules and
we characterize to A, as a Picard variety of C, 1, where C, is a curve. Then a Hecke functor is de�nid
as the integral transform

Φ1 : DCoh(Pic(C),D)→ DCoh(C × Pic(C),D),

to D-modules on LBun. But using the classical limit conjeture is had the equivalence through of the
interpretation of Higgs sheaves, given in the category DCoh(LHiggs0,O), which can be extended to the
corresponding Langlands correspondence c, of the quantum sheaves given by c = quantBun◦Φ◦quant−1C ,
where Φ, is the Fourier-Mukai transform that we want. Then we have as integral the integral transforms
composition [2] c ◦ Φµ =L Φµ, which is solution to the �eld equation Isomdh = 0, where h, are the
cotangent vector (Higgs �elds).

Then by superposing of these states, considering the �eld corresponding rami�cations(connections),
we have

H = H0(ωc)⊕H0(ω⊗2C )⊕ · · · ⊕H0(ω⊗nC ),

which has their re-interpretation as the curvature energy expressed through the H-states which can be

written using the superposing principle to each connection ω⊗jC , (with C, a curve) that describes the
corresponding dilaton (photon or gauge particle).

Likewise, in a Hamiltonian densities space [3] we have the Figure 1, considering a Hitchin base. In
the case of a spinor representation the corresponding H-states can be given as spinor waves (Figure 2)
which can be consigned in oscillations in the space-time-curvature/spin, to a microscopic deformation
measured [4] in H.

1In a physical context (could be taken M = Pic(C), where M, is the space-time), this represent a trace of particles in
the symplectic geometry that can be characterized in a Hamiltonian manifold.
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