On the problem of product of inner radii symmetric non-overlapping domains

Vyhivska Liudmyla

(Institute of mathematics of NAS of Ukraine, Kyiv, Ukraine) E-mail: liudmylavygivska@ukr.net

Let \mathbb{N} , \mathbb{R} be the sets of natural and real numbers, respectively, \mathbb{C} be the complex plane, $\overline{\mathbb{C}} = \mathbb{C} \bigcup \{\infty\}$ be its one-point compactification. Let r(D, a) be the inner radius of the domain $D \subset \overline{\mathbb{C}}$ with respect to a point $a \in D$. The inner radius is a generalization of the conformal radius for multiply connected domains. The inner radius of the domain D is associated with the generalized Green function $g_D(z, a)$ of the domain D by the relations

$$g_D(z,a) = \ln \frac{1}{|z-a|} + \ln r(D,a) + o(1), \quad z \to a, g_D(z,\infty) = \ln |z| + \ln r(D,\infty) + o(1), \quad z \to \infty.$$

The system of non-overlapping domains is called a finite set of arbitrary domains $\{D_k\}_{k=0}^n$, $n \in \mathbb{N}$, $n \ge 2$ such that $D_k \subset \overline{\mathbb{C}}$, $D_k \cap D_m = \emptyset$, $k \ne m$, $k, m = \overline{0, n}$.

 $n \ge 2$ such that $D_k \subset \overline{\mathbb{C}}, \ D_k \cap D_m = \emptyset, \ k \ne m, \ k, m = \overline{0, n}.$ Denote by $\alpha_k := \frac{1}{\pi} \arg \frac{a_{k+1}}{a_k}, \ \alpha_{n+1} := \alpha_1, \ k = \overline{1, n}, \ \sum_{k=1}^n \alpha_k = 2.$

Theorem 1. For any $\gamma > 1$ there exists $n_0(\gamma) \in \mathbb{N}$, such that for any $n \ge n_0(\gamma)$, and system of points $A_n = \{a_k\}_{k=1}^n$, $|a_k| = 1$, and system of pairwise non-overlapping domains $\{D_k\}_{k=0}^n$, $0 \in D_0$, $a_k \in D_k \subset \overline{\mathbb{C}}$, such that domains $\{D_k\}_{k=1}^n$ are symmetric with respect to a unit circle, the following inequality holds

$$r^{\gamma}(D_0, 0) \prod_{k=1}^{n} r(D_k, a_k) \leqslant r^{\gamma} \left(D_0^{(0)}, 0 \right) \prod_{k=1}^{n} r \left(D_k^{(0)}, a_k^{(0)} \right)$$

The equality is attained if $a_k = a_k^{(0)}$ and $D_k = D_k^{(0)}$, $k = \overline{0, n}$, $a_0 = 0$, where $a_k^{(0)}$ and $D_k^{(0)}$ are, respectively, poles and circular domains of the quadratic differential

$$Q(w)dw^{2} = -\frac{\gamma w^{2n} + 2(n^{2} - \gamma)w^{n} + \gamma}{w^{2}(w^{n} - 1)^{2}} dw^{2}.$$

Rerefences

- Vladimir Dubinin. Symmetrization method in geometric function theory of complex variables. Successes Mat. Science 49(1): 3-76, 1994.
- [2] Leonid Kovalev. On the inner radii of symmetric nonoverlapping domains. Izv. Vyssh. Uchebn. Zaved. Mat., 6: 80-81, 2000.
- [3] Leonid Kovalev. On three disjoint domains. Dal'nevost. Mat. Zh., 1: 3-7, 2000.
- [4] Alexander Bakhtin, Galina Bakhtina, Yuriy Zelinskii. Topological-algebraic structures and geometric methods in complex analysis. Proceedings of the Institute of Mathematics of NAS of Ukraine, 308 pp., 2008. (in Russian)