About some properties of functions determined as transformations from W^n to W^m -representation

Victoria Voloshyna (National pedagogical university) *E-mail:* wictorria@gmail.com

In this short article we describe the main properties of W^n -representation of points of unit hypercube. Our main goal is to show main properties of functions determined as transformations from W^n -representation of unit square to W^m -representation of points from unit interval [1].

1. Algorithm for construction of W^n -representation

At the beginning we have the unit n-dimensional hypercube $I^n = [0, 1]^n$. W^n -representation of I^n can be received using next steps.

1) Let us divide the I^n into r parts which are closed in \mathbb{R}^n and their interiors don't intersect. Lebesgue measures of new sets $\Delta_0, \Delta_1, ..., \Delta_{r-1}$ are $q_0, q_1, ..., q_{r-1}$ respectively.

2) Each set Δ_i is divided analogically into parts $\Delta_{i0}, ..., \Delta_{i[r-1]}$. The proportion of participles' Lebesgue measures remains invariant. After the second stage process continues and each set $\Delta_{\alpha_1...\alpha_k}$ is divided using the same rule.

If $k \to \infty$ then the Lebesgue measure of $\Delta_{\alpha_1...\alpha_k}$ must converge to zero.

2. Functions of transformation

Let us to define function of transformation W^n to W^m -representation.

Definition 1. Function of transformation from W^n to W^m -representation is a functional mapping which gives for each $x = \Delta_{\alpha_1...\alpha_k...}^{W^n}$ a unique $y = \Delta_{y(\alpha_1)...y(\alpha_k)...}^{W^m}$.

Remark 2. For uniqueness of such mapping we will consider to choose only the representation of $x \in E^n$ in which vector $(\alpha_1, ..., \alpha_k, ...)$ is minimal.

Definition 3. Function of transformation from W^n - to Q-representation is a functional mapping which gives for each $x = \Delta_{\alpha_1...\alpha_k...}^{W^n}$ a unique $y = \Delta_{y(\alpha_1)...y(\alpha_k)...}^Q$.

We received new results for the graphs of functions of transformation from W^n - to Q-representation.

Definition 4. Simple n-cube W^n -representation of I^n is W^n -representation which consists only of *n*-cubes with equal Lebesgue *n*-dimensional measure on each step (we enumerate particles from left higher corner and preserve orientation of numeration on next steps).

Theorem 5. The graph of function of transformation from simple n-cube W^n -representation to sadic number representation [2] is a fractal set with dimension $log(4)/log(4^n) = 1/n$

Theorem 6. The graph of function of transformation from simple quadrate W^n -representation to s-adic number representation is nowhere connected set.

Definition 7. Connected n-cube W^n -representations of I^n is a class of W^n -representations such that:

1) W^n -representation consists only of figures with equal Lebesgue *n*-dimensional measure on each step (we enumerate particles from left higher corner and preserve orientation of numeration on next steps).

2) At least one point of I^n has continuum quantity of W^n -representations in this system.

Theorem 8. The graph of function of transformation from connected n-cube W^n -representation to s-adic number representation is nowhere connected set.

Our next goal is to receive new information about properties of functions of transformation from W^n - to W^m -representation and to formulate general theorems for their classification.

Rerefences

- [1] Voloshyna V. Properties and applications of W^n -representation of points from unit hypercube. (in addition, TIMS, 2016)
- [2] Pratsiovytyi M. V. Fractal approach to researching of singular distributions. National pedagogical university named after M. P. Dragomanov, Kyiv, 1998, 296 p.