On nuclear operators with trace V = 1 and $V^2 = 0$

Oleg Reinov

(Saint-Petersburg State University, 28, Universitetskii pr., Petrodvorets, St. Petersburg, 198504

Russia)

E-mail: orein51@mail.ru

In 1955, A. Grothendieck [2] has introduced the notion of the approximation property and has shown that there exists a Banach space without the approximation property iff there exists an operator $U: c_0 \to c_0$ such that the (nuclear) trace of U equals 1 but $U^2 = 0$ identically [2, Chap. I, "Proposition" 37. $(a') \Leftrightarrow (f'')$, pp. 170-171].

Recall that a Banach space X has the approximation property if the identity map id_X can be approximated, in the topology of compact convergence, by finite rank operators.

An operator $T: X \to X$ is said to be s-nuclear $(0 < s \le 1)$ if there are linear continuous functionals $(f_k) \subset X^*$ and elements $(x_k) \subset X$ so that $\sum ||f_k||^s ||x_k||^s < \infty$ and $T(x) = \sum f_k(x)x_k$ for every $x \in X$. They say "nuclear operator" if p = 1.

After Per Enflo's construction of a Banach space without the approximation property [1], it was shown (see e.g. [3, 10.4.5]) that there are not only nuclear operators in c_0 with the above property but also there exists a nuclear operator T in l^1 which is s-nuclear for every $s \in (2/3, 1]$ and such that trace T = 1 and $T^2 = 0$.

We discuss a way to get the nuclear operators of such a kind in the spaces l^p , for all $p > 1, p \neq 2$ (in c_0 for $p = \infty$):

Theorem 1. Let $p \in [1,\infty]$, $p \neq 2$, 1/r = 1 + |1/2 - 1/p|. There exists a nuclear operator V in l^p (in c_0 for $p = \infty$) such that

- (1) V is s-nuclear for each $s \in (r, 1]$;
- (2) V is not r-nuclear;
- (3) trace V = 1 and $V^2 = 0$.

Theorem 2. Theorem 1 is optimal with respect to p and r.

Note that for $p = \infty$ we have r = 2/3. We give also some applications.

Rerefences

- [1] Per Enflo. A counterexample to the approximation property in Banach spaces. Acta Mathematica, 130 : 309–317, 1973.
- [2] Alexander Grothendieck. Produits tensoriels topologiques et éspaces nucléaires, volume 16 of Memoires of American Mathematical Society. 1955.
- [3] A. Pietsch. Operator Ideals. North Holland, 1980.