Some extremal and structural properties of finite ultrametric spaces

O. Dovgoshey

(Function theory department, Institute of Applied Mathematics and Mechanics of NASU, Dobrovolskogo str. 1, Slovyansk 84100, Ukraine) *E-mail:* oleksiy.dovgoshey@gmail.com

E. Petrov

(Function theory department, Institute of Applied Mathematics and Mechanics of NASU, Dobrovolskogo str. 1, Slovyansk 84100, Ukraine) *E-mail:* eugeniy.petrov@gmail.com

H.-M. Teichert

(Institute of Mathematics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany) E-mail: teichert@math.uni-luebeck.de

We describe some extremal and structural properties of finite ultrametric spaces which have the strictly n-ary representing trees and the representing trees with injective internal labeling.

Recall some definitions. The spectrum of an ultrametric space (X, d) is the set

$$\operatorname{Sp}(X) = \{ d(x, y) \colon x, y \in X \}.$$

For a graph G = (V, E), the sets V = V(G) and E = E(G) are called the set of vertices (or nodes) and the set of edges, respectively. Let (X, d) be an ultrametric space with $|X| \ge 2$ and the spectrum Sp(X) and let $r \in Sp(X)$ be nonzero. Define by $G_{r,X}$ a graph for which $V(G_{r,X}) = X$ and

$$(\{u, v\} \in E(G_{r,X})) \Leftrightarrow (d(u, v) = r).$$

Denote by G' the subgraph of the graph G obtained from G by deleting of isolated vertices. With every finite ultrametric space (X, d) we can associate a labeled rooted tree T_X , see [1]. By \mathbf{B}_X we denote the set of all balls of the space X.

Theorem 1. Let (X, d) be a finite nonempty ultrametric space. The following conditions are equivalent.

- (i) The diameters of different nonsingular balls are different.
- (ii) The internal labeling of T_X is injective.
- (iii) $G'_{r,X}$ is a complete multipartite graph for every $r \in \operatorname{Sp}(X) \setminus \{0\}$.
- (iv) The equality $|\mathbf{B}_X| = |X| + |\operatorname{Sp}(X)| 1$ holds.

Let (X, d) be an ultrametric space. Recall that balls B_1, \ldots, B_k in (X, d) are equidistant if there is r > 0 such that $d(x_i, x_j) = r$ holds whenever $x_i \in B_i$ and $x_j \in B_j$ and $1 \le i < j \le k$.

Theorem 2. Let (X, d) be a finite nonempty ultrametric space and let $n \ge 2$ be integer. The following conditions are equivalent.

- (i) T_X is strictly n-ary.
- (ii) For every nonzero $r \in \text{Sp}(X)$ the graph $G'_{r,X}$ is the union of p complete n-partite graphs, where p is a number of all internal nodes of T_X labeled by r.
- (iii) For every nonsingular ball $B \in \mathbf{B}_X$ there are the equidistant balls $B_1, ..., B_n \in \mathbf{B}_X$ such that $B = \bigcup_{j=1}^n B_j$ and diam $B_j < \operatorname{diam} B$ for every $j \in \{1, \ldots, n\}$.
- (iv) The equality $(n-1)|\mathbf{B}_Y| + 1 = n|Y|$ holds for every ball $Y \in \mathbf{B}_X$.

Let T be a rooted tree and let v be a node of T. Denote by $\delta^+(v)$ the out-degree of v, i.e., $\delta^+(v)$ is the number of children of v, and write

$$\Delta^+(T) = \max_{v \in V(T)} \delta^+(v),$$

i.e., $\Delta^+(T)$ is the maximum out-degree of V(T). It is clear that $v \in V(T)$ is a leaf of T if and only if $\delta^+(v) = 0$. Moreover, T is strictly *n*-ary if and only if the equality

$$\delta^+(v) = n$$

holds for every internal node v of T. Let us denote by I(T) the set of all internal nodes of T.

Lemma 3. The inequality

$$|V(T)| \leq \Delta^+(T)|I(T)| + 1$$

holds for every rooted tree T. If $|V(T)| \ge 2$, then this inequality becomes the equality if and only if T is strictly n-ary with $n = \Delta^+(T)$.

Corollary 4. The inequality

$$|\mathbf{B}_X| \ge \frac{\Delta^+(T_X)|X| - 1}{\Delta^+(T_X) - 1}$$

holds for every finite nonempty ultrametric space (X, d). This inequality becomes an equality if and only if T_X is a strictly n-ary rooted tree with $n = \Delta^+(T_X)$.

Proposition 5. Let (X, d) be a finite ultrametric space with $|X| \ge 2$. Then the inequality

$$2|\mathbf{B}_X| \ge |\operatorname{Sp}(X)| + \frac{2\Delta^+(T_X)|X| - \Delta^+(T_X) - |X|}{\Delta^+(T_X) - 1}$$

holds. This inequality becomes an equality if and only if T_X is a strictly n-ary rooted tree with $n = \Delta^+(T_X)$ and with the injective internal labeling.

Corollary 6. Let (X, d) be a finite ultrametric space with $|X| \ge 2$ and let $n = \Delta^+(T_X)$. The following conditions are equivalent.

- (i) T_X is a strictly n-ary tree with injective internal labeling.
- (ii) $G'_{r,X}$ is complete n-partite graph for every $r \in \operatorname{Sp}(X)$.

(iii) The equality

$$2|\mathbf{B}_X| = |\operatorname{Sp}(X)| + \frac{2\Delta^+(T_X)|X| - \Delta^+(T_X) - |X|}{\Delta^+(T_X) - 1}$$

holds.

Rerefences

- Evgenii A. Petrov, Aleksei A. Dovgoshey. On the Gomory-Hu Inequality. Journal of Mathematical Sciences, 198(4): 392-411, 2014.
- [2] O. Dovgoshey, E. Petrov, H.-M. Teichert. Extremal properties of finite ultrametric spaces and invariants of their isometries. arXiv:1610.08282v1, 2016.