Landau-type inequalities for curves on Riemannian manifolds

Igor O. Parasyuk

(National Taras Shevchenko University of Kyiv, Volodymyrs'ka str., 64, Kyiv, Ukraine, 01601) *E-mail:* pio@univ.kiev.ua

Let for a natural number n a function $f(\cdot) \in \mathbb{C}^n (\mathbb{R} \mapsto \mathbb{R})$ satisfy the inequalities

$$\|f(\cdot)\|_{\infty} := \sup_{t \in \mathbb{R}} |f(t)| < \infty, \quad \left\|f^{(n)}(\cdot)\right\|_{\infty} < \infty$$

In the case where n = 2, the famous Landau –Hadamard inequality reads

$$\left\|f'(\cdot)\right\|_{\infty} \leq \sqrt{2 \left\|f(\cdot)\right\|_{\infty} \left\|f''(\cdot)\right\|_{\infty}}.$$

In the general case $n \ge 2, 1 \le k < n$, Kolmogorov determined the best constants $C_{n,k}$ for inequality

$$\left\| f^{(k)}(\cdot) \right\|_{\infty} \le C_{n,k} \left\| f(\cdot) \right\|^{1-k/n} \left\| f^{(n)}(\cdot) \right\|_{\infty}^{k/n}$$

(see, e.g., [1]). The goal of the present report is to discuss how the above inequalities can be generalized for the case of mappings taking values in Riemannian manifolds.

Let $(\mathcal{M}, \mathfrak{g} = \langle \cdot, \cdot \rangle)$ be a smooth complete Riemannian manifold with the metric tensor \mathfrak{g} , and let ∇ be the Levi-Civita connection with respect to \mathfrak{g} . For a given smooth mapping $x(\cdot) : I \mapsto \mathcal{M}$ of an interval $I \subset \mathbb{R}$ and for a smooth vector field $\xi(\cdot) : I \mapsto T\mathcal{M}$ along $x(\cdot)$, denote by $\nabla_{\dot{x}}\xi(t)$ the covariant derivative of $\xi(\cdot)$ along the tangent vector $\dot{x}(t) \in T_{x(t)}\mathcal{M}$ at the point $t \in I$, and by $\nabla_{\dot{x}}^k$ the k-th iterate of $\nabla_{\dot{x}}$. (Here $T\mathcal{M} = \bigsqcup_{x \in \mathcal{M}} T_x\mathcal{M}$ stands for the total space of the tangent bundle with natural projection $\pi(\cdot) : T\mathcal{M} \mapsto \mathcal{M}$, and $T_x\mathcal{M} = \pi^{-1}(x)$ denotes the tangent space to \mathcal{M} at x.)

For a smooth function $U(\cdot) : \mathcal{M} \to \mathbb{R}$ denote by $\nabla U(x) \in T_x \mathcal{M}$ and by $H_U(x) : T_x \mathcal{M} \to T_x \mathcal{M}$, respectively, the gradient vector and the Hesse form of $U(\cdot)$ at point x (by the definition

$$\langle H_U(x)\xi,\eta\rangle = \langle \nabla_\xi \nabla U(x),\eta\rangle$$

for any $x \in \mathcal{M}$ and any $\xi, \eta \in T_x \mathcal{M}$). Define the natural norm for tangent vector ξ as $\|\xi\| := \sqrt{\langle \xi, \xi \rangle}$ and the norm for vector field $\xi(\cdot)$ along $x(\cdot)$ as

$$\left\|\xi(\cdot)\right\|_{\infty} := \sup_{t \in \mathbb{R}} \left\|\xi(t)\right\|.$$

We obtain the following Landau-type inequality.

Theorem 1. Let $x(\cdot) : \mathbb{R} \mapsto \mathcal{M}$ be a smooth mapping such that

$$\|\nabla_{\dot{x}}\dot{x}(\cdot)\|_{\infty} < \infty.$$

Suppose that there exists a smooth function $U(\cdot) : \mathcal{M} \mapsto \mathbb{R}$ satisfying the inequalities

$$\sup_{t\in\mathbb{R}}U\circ x(t)<\infty,\quad \left\|\nabla U\circ x(\cdot)\right\|_{\infty}<\infty,$$

and

$$\lambda := \inf_{t \in \mathbb{R}} \min\left\{ \left\langle \left[H_U \circ x(t) \right] \xi, \xi \right\rangle : \xi \in T_{x(t)} \mathcal{M}, \ \|\xi\| = 1 \right\} > 0$$

Then

$$\|\dot{x}(\cdot)\|_{\infty} \le C\sqrt{\|\nabla U \circ x(\cdot)\|_{\infty} \|\nabla_{\dot{x}}\dot{x}(\cdot)\|_{\infty}/\lambda}$$

where the constant C does not exceed the positive root of the equation $\zeta^3 - 3\zeta = 1$. In particular, C < 1.87939.

Remark 2. If $\mathcal{M} = \mathbb{R}^d$ and $U(x) := ||x||^2/2$, then $\lambda = 1$, and Theorem 1 leads to the Landau inequality with the constant C somewhat greater than the best one $C_{2,1} = \sqrt{2}$.

If the closure of $x(\cdot)$ is a compact subset \mathcal{K} of a domain $\mathcal{D} \subset \mathcal{M}$ and there exists a point $x_0 \in \mathcal{D} \setminus \mathcal{K}$ such that the distance function

$$\rho(\cdot, x_0): \mathcal{D} \setminus \{x_0\} \mapsto (0, \infty)$$

is smooth, then Theorem 1 holds true for $U(x) := \rho^2(x, x_0)$.

It turns out that it is much easier to obtain a counterpart of the Landau – Kolmogorov inequality for vector fields along mappings.

Theorem 3. Let $\xi(\cdot) : \mathbb{R} \mapsto T\mathcal{M}$ be a smooth vector field along a smooth mapping $x(\cdot) : \mathbb{R} \mapsto \mathcal{M}$ and let $n \geq 2$ be a natural number. Suppose that

$$\|\xi(\cdot)\|_{\infty} < \infty, \quad \|\nabla_{\dot{x}}^n \xi(\cdot)\|_{\infty} < \infty.$$

Then for any natural k < n there holds the inequality

$$\left\|\nabla_{\dot{x}}^{k}\xi(\cdot)\right\|_{\infty} \leq C_{n,k} \left\|\xi(\cdot)\right\|_{\infty}^{1-k/n} \left\|\nabla_{\dot{x}}^{n}\xi(\cdot)\right\|_{\infty}^{k/n}$$

where $C_{n,k}$ are the Kolmogorov constants.

Rerefences

[1] Steven R. Finch. Mathematical constants, volume 94 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 2003.