The local density and the local weak density of N^{φ}_{τ} -kernel of a topological space X and superextensions

Mukhamadiev F.G.

(Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan) *E-mail:* farkhod8717@mail.ru

Definition 1. The weak density of a topological space X is the smallest cardinal number $\tau \geq \aleph_0$ such that there is a π -base in X coinciding with τ centered systems of open sets, i.e. there is a π -base $B = \bigcup \{B_{\alpha} : \alpha \in A\}$, where B_{α} is a centered system of open sets for each $\alpha \in A$ and $|A| = \tau [1]$.

The weak density of a topological space X is denoted by wd(X). If $wd(X) = \aleph_0$ then we say that a topological space X is weakly separable.

Definition 2. We say that a topological space X is locally separable at a point $x \in X$ if x has a separable neighborhood [2].

A topological space is locally separable if it is locally separable at each point $x \in X$.

Definition 3. We say that a topological space X is locally τ -dense at a point $x \in X$ if τ is the smallest cardinal number such that x has a τ -dense neighborhood in X.

The local density at a point x is denoted by ld(x). The local density of a space X is defined as the supremum of all numbers ld(x) for $x \in X$; this cardinal number is denoted by ld(X).

Definition 4. A topological space is locally weakly τ dense at a point $x \in X$ if τ is the smallest cardinal number such that x has a neighborhood of weak density τ in X

The local weak density at a point x is denoted by lwd(x).

The local weak density of a topological space X is defined with following way: $lwd(X) = \sup\{lwd(x) : x \in X\}$.

A system $\xi = \{F_{\alpha} : \alpha \in A\}$ of closed subsets of a space X is called *linked* if any two elements from ξ intersect. Any linked system can be complemented to a maximal linked system (MLS), but this complement is, as a rule, not unique [3].

Proposition 1 [3]. A linked system ξ of a space X is a MLS iff it possesses the following completeness property:

if a closed set $A \subset X$ intersects with any element form ξ , then $A \in \xi$.

Denote by λX the set of all MLS of the space X. For an open set $U \subset X$, set

 $O(U) = \{\xi \in \lambda X : \text{ there is an } F \in \xi \text{ such that } F \subset U\}.$

The family of subsets in the form of O(U) covers the set λX ($O(X) = \lambda X$), that's why it forms an open subbase of the topology on λX . The set λX equipped with this topology is called *the superextension* of X.

A.V. Ivanov defined the space NX of complete linked systems (CLS) of a space X in a following way:

Definition 5. A linked system M of closed subsets of a compact X is called *a complete linked system* (a CLS) if for any closed set of X, the condition

"Any neighborhood OF of the set F consists of a set $\Phi \in M$ " implies $F \in M[2]$. A set NX of all complete linked systems of a compact X is called the space NX of CLS of X. This space is equipped with the topology, the open basis of which is formed by sets in the form of $E = O(U_1, U_2, \ldots, U_n) \langle V_1, V_2, \ldots, V_s \rangle = \{M \in NX : \text{ for any } i = 1, 2, \ldots, n \text{ there exists } F_i \in M \text{ such that } F_i \subset U_i, \text{ and for any } j = 1, 2, \ldots, s, F \cap V_j \neq \emptyset \text{ for any } F \in M\}, \text{ where } U_1, U_2, \ldots, U_n, V_1, V_2, \ldots, V_s \text{ are nonempty open in } X \text{ sets } [4].$

Definition 6. Let X be a compact space, φ be a cardinal function and τ be an arbitrary cardinal number. We call an N_{τ}^{φ} - kernel of a topological space X the space

$$N^{\varphi}_{\tau}X = \{ M \in NX : \exists F \in M : \varphi(F) \le \tau \}.$$

Theorem 7. Let X be an infinite T_1 -space and $h\varphi(X) \leq \tau$. Then 1) $ld(\lambda X) = ld(N^{\varphi}_{\tau}X);$ 2) $lwd(\lambda X) = lwd(N^{\varphi}_{\tau}X).$

References

- Fedorchuk V.V., Filippov V.V., Topology of hyperspaces and its applications, Moscow: Mathematics, Cybernetics, V.4.(1989) 48 p.
- [2] Engelking R., General topology, (Moscow: Mir), 1986, 752 p.
- [3] Fedorchuk V. V., Filippov V. V. General Topology. Basic Constructions. Fizmatlit, Moscow, 2006.
- [4] Ivanov A. V. A space of complete linked systems, volume 27 of Siberian Mathematical Journal. 1986. pp. 863-875.