Contractibility of manifolds by means of stochastic flows

Alexandra Antoniouk, Sergiy Maksymenko

(Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine) *E-mail:* antoniouk.a0gmail.com, maks@imath.kiev.ua

In [2] Xue-Mei Li studied stability of stochastic differential equations and the interplay between the moment stability of a SDE and the topology of the underlying manifold. In particular, she gave sufficient condition on SDE on a manifold M under which the fundamental group $\pi_1 M = 0$. We prove that in fact under essentially weaker conditions the manifold M is contractible, that is all homotopy groups $\pi_k M$, $k \geq 1$, vanish.

Let M be a smooth connected manifold (i.e. locally Euclidean Hausdorff topological space with countable base) of dimension m possibly non-compact and having a boundary and $\mathcal{T} = (\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, so Ω is a set, \mathcal{F} is a σ -algebra of subsets of Ω , and \mathbf{P} is a probability measure on \mathcal{F} . Let also $\{\mathcal{F}_t\}_{t\geq 0}$ for some $a \geq 0$ be a family of σ -algebras in \mathcal{F} with the following properties:

- each \mathcal{F}_t contains all null sets of \mathcal{F} ;
- $\mathcal{F}_s \subseteq \mathcal{F}_t$ for s < t;

• $\{\mathcal{F}_t\}_{t\geq 0}$ is right continuous in the sense that $\mathcal{F}_s = \bigcap_{s < t} \mathcal{F}_t$ for all $s \geq 0$.

A map $\xi : M \times [0, +\infty) \times \Omega \to M$ will be called a *stochastic deformation* whenever there exists $N \in \mathcal{F}$ of measure 0 such that for each $\omega \in \Omega \setminus N$:

- (a) the map $\xi_{x,t}: \Omega \to M, \xi_{x,t}(\omega) = \xi(x,t,\omega)$, is $\mathcal{F}_t/\mathcal{B}(M)$ -measurable;
- (b) the map $\xi_{\omega} : M \times [0, +\infty) \to M, \ \xi_t(x, t) = \xi(x, t, \omega)$, is continuous;
- (c) $\xi(x,0,\omega) = x$ for all $x \in M$.

If in addition to (a) and (b) the map ξ satisfies "semi-group property":

(d) $\xi_{\omega}(\xi_{\omega}(x,s),t) = \xi_{\omega}(x,s+t)$ for all $s,t \ge 0$,

then ξ is called an *autonomous stochastic flow*.

Given a stochastic deformation ξ one can define the following σ -additive probability measures $\mu_{x,t}$, $(x,t) \in M \times [0, +\infty)$ on M by

$$\mu_{x,t}(A) := \mathbf{P}\{\omega \in \Omega : \xi(x,t,\omega) \in A\}$$

Theorem 1. Suppose ρ is a complete Riemannian metric on M and $\xi : M \times [0, +\infty) \times \Omega \to M$ is a stochastic deformation having the following properties:

- (i) the map $\xi_{t,\omega}: M \to M$, $\xi_{t,\omega}(x) = \xi(x,t,\omega)$, is C^1 for all $t \in [0,+\infty)$ and $\omega \in \Omega \setminus N$;
- (ii) for each compact subset \mathbf{L} of the tangent bundle TM we have that

$$\int_{0}^{+\infty} \sup_{(x,v)\in\mathbf{L}: x\in M, v\in T_xM} \mathbf{E} \|T_x\xi_{t,\omega}(v)\|dt < \infty,$$

where $\mathbf{E}f = \int_{\Omega} f d\mathbf{P}$ is a mean value, and the norm is taken with respect to ρ ;

(iii) there exists a point $z \in M$, a compact subset $K \subset M$, $\varepsilon > 0$ and N > 0 such that $\mu_{z,t}(K) > \varepsilon$ for all t > N.

Then M is contractible.

Rerefences

- Alexandra Antoniouk, Sergiy Maksymenko, Contractibility of manifolds by means of stochastic flows, arXiv:1111.0070v3, 2017
- [2] X.-M. Li, Stochastic differential equations on noncompact manifolds: moment stability and its topological consequences, Probab. Theory Related Fields 100(4) (1994) 417-428.