Contractibility of manifolds by means of stochastic flows

Alexandra Antoniouk, Sergiy Maksymenko
(Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine)
E-mail: antoniouk.a@gmail.com, maks@imath.kiev.ua

In [2] Xue-Mei Li studied stability of stochastic differential equations and the interplay between the moment stability of a SDE and the topology of the underlying manifold. In particular, she gave sufficient condition on SDE on a manifold \(M \) under which the fundamental group \(\pi_1 M = 0 \). We prove that in fact under essentially weaker conditions the manifold \(M \) is contractible, that is all homotopy groups \(\pi_k M, k \geq 1 \), vanish.

Let \(M \) be a smooth connected manifold (i.e. locally Euclidean Hausdorff topological space with countable base) of dimension \(m \) possibly non-compact and having a boundary and \(\mathcal{F} = (\Omega, \mathcal{F}, \mathbf{P}) \) be a probability space, so \(\Omega \) is a set, \(\mathcal{F} \) is a \(\sigma \)-algebra of subsets of \(\Omega \), and \(\mathbf{P} \) is a probability measure on \(\mathcal{F} \). Let also \(\{\mathcal{F}_t\}_{t \geq 0} \) for some \(\alpha \geq 0 \) be a family of \(\sigma \)-algebras in \(\mathcal{F} \) with the following properties:

- each \(\mathcal{F}_t \) contains all null sets of \(\mathcal{F} \);
- \(\mathcal{F}_s \subseteq \mathcal{F}_t \) for \(s < t \);
- \(\{\mathcal{F}_t\}_{t \geq 0} \) is right continuous in the sense that \(\mathcal{F}_s = \cap_{s < t} \mathcal{F}_t \) for all \(s \geq 0 \).

A map \(\xi : M \times [0, +\infty) \times \Omega \rightarrow M \) will be called a stochastic deformation whenever there exists \(N \in \mathcal{F} \) of measure 0 such that for each \(\omega \in \Omega \setminus N \):

(a) the map \(\xi_{x,t} : \Omega \rightarrow M, \xi_{x,t}(\omega) = \xi(x, t, \omega) \), is \(\mathcal{F}_t / \mathcal{B}(M) \)-measurable;
(b) the map \(\xi_\omega : M \times [0, +\infty) \rightarrow M, \xi_t(x, t) = \xi(x, t, \omega) \), is continuous;
(c) \(\xi(x, 0, \omega) = x \) for all \(x \in M \).

If in addition to (a) and (b) the map \(\xi \) satisfies “semi-group property”:

(d) \(\xi_\omega(\xi_\omega(x, s), t) = \xi_\omega(x, s + t) \) for all \(s, t \geq 0 \),
then \(\xi \) is called an autonomous stochastic flow.

Given a stochastic deformation \(\xi \) one can define the following \(\sigma \)-additive probability measures \(\mu_{x,t}, (x, t) \in M \times [0, +\infty) \) on \(M \) by

\[
\mu_{x,t}(A) := \mathbf{P}\{\omega \in \Omega : \xi(x, t, \omega) \in A\}.
\]

Theorem 1. Suppose \(\rho \) is a complete Riemannian metric on \(M \) and \(\xi : M \times [0, +\infty) \times \Omega \rightarrow M \) is a stochastic deformation having the following properties:

(i) the map \(\xi_{t,\omega} : M \rightarrow M, \xi_{t,\omega}(x) = \xi(x, t, \omega) \), is \(C^1 \) for all \(t \in [0, +\infty) \) and \(\omega \in \Omega \setminus N \);
(ii) for each compact subset \(L \) of the tangent bundle \(TM \) we have that

\[
\int_0^\infty \sup_{(x,v) \in L} \mathbf{E} \|T_x \xi_{t,\omega}(v)\| dt < \infty,
\]

where \(\mathbf{E} f = \int_{\Omega} f d\mathbf{P} \) is a mean value, and the norm is taken with respect to \(\rho \);
(iii) there exists a point \(z \in M \), a compact subset \(K \subset M \), \(\varepsilon > 0 \) and \(N > 0 \) such that \(\mu_{z,t}(K) > \varepsilon \) for all \(t > N \).

Then \(M \) is contractible.

References
