Moyal and Rankin-Cohen deformations of algebras

Volodymyr Lyubashenko

(Institute of Mathematics, 3 Tereshchenkivska st., Kyiv, 01004, Ukraine)
E-mail: lub@imath.kiev.ua

Denote $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$, $\mathbb{C}^\times = \mathbb{C} - \{0\}$. The left action

$$SL(2, \mathbb{R}) \times (\mathbb{H} \times \mathbb{C}^\times) \to \mathbb{H} \times \mathbb{C}^\times, \quad \gamma(z, X) = \left(\frac{az + b}{cz + d}, \frac{X}{cz + d}\right),$$

where $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)$, induces the right action of $SL(2, \mathbb{R})$ on the algebra of holomorphic functions $\text{Hol}(\mathbb{H} \times \mathbb{C}^\times)$. The restriction of this action to the subspace $X^k \text{Hol}(\mathbb{H})$, $k \in \mathbb{Z}$, equips $\text{Hol}(\mathbb{H})$ with the right action ρ_k of $SL(2, \mathbb{R})$. These actions are important in the definition of modular (automorphic) forms [4]. The Rankin–Cohen brackets on this subalgebra were defined in [1] as follows. Let $k, l \in \mathbb{Z}$, $n \in \mathbb{N} = \mathbb{Z}_{\geq 0}$, $f, g \in \text{Hol}(\mathbb{H})$. Then

$$[X^k f, X^l g]_{RC}^n = X^{k+l+2n} \sum_{r,s \geq 0} (-1)^s \binom{k+n-1}{s} \binom{l+n-1}{r} f^{(r)} g^{(s)}(n),$$

where $f^{(r)} = \partial_x^r f$. Cohen proved in [1, Theorem 7.1] that the operation $\underline{\underline{\cdot}}_{RC}^n$ on $\text{Hol}(\mathbb{H})[X^{-1}, X]$ is $SL(2, \mathbb{R})$-equivariant. A deformation of an associative \mathbb{C}-algebra $(A, m : A \otimes A \to A)$ is a \mathbb{C}-bilinear map $\mu : A \times A \to A[[h]]$, $\mu(a, b) = \sum_{n=0}^{\infty} h^n \mu_n(a, b)$ such that

$$\mu_0(a, b) = m(a \otimes b) = ab, \quad \mu(1, a) = a = \mu(a, 1)$$

and the $\mathbb{C}[[h]]$-bilinear map $\tilde{\mu} : A[[h]] \times A[[h]] \to A[[h]]$, which extends μ by $\mathbb{C}[[h]]$-bilinearity and h-adic continuity, is associative. Let $a \in \text{Der} A$ be an abelian \mathbb{C}-subalgebra of the Lie \mathbb{C}-algebra of derivations of A. View an element $P = \sum_{i=1}^l \xi_i \otimes \eta_i \in a \otimes \mathfrak{a}$ as a \mathbb{C}-linear operator $A^{\otimes 2} \to A^{\otimes 2}$. It is well-known that

$$a \star_P b \equiv \mu_P(a, b) = m \exp(hP).(a \otimes b) = \sum_{n=0}^{\infty} \frac{h^n}{n!} P^n.(a \otimes b)$$

is a deformation of A. An example is provided by the Moyal deformation of $A = \text{Hol}(\mathbb{C}^2)$, $\mathbb{C}^2 = \{(q, p)\}$, $P = M = \partial_q \otimes \partial_q - \partial_q \otimes \partial_q$. The point of this note is to show that the Rankin–Cohen brackets give a deformation, related to the Moyal deformation. This is already proven by V. Ovsienko [3] using different formulas and in a different way.

Consider the embedding

$$\Psi = (\mathbb{H} \times \mathbb{C}^\times \hookrightarrow \mathbb{C} \times \mathbb{C}^\times \xrightarrow{\psi} \mathbb{C} \times \mathbb{C}^\times \hookrightarrow \mathbb{C}^2)$$

where $\psi(z, X) = (zX^{-1}, X^{-1}) = (q, p)$. Vector field ∂_p (resp. ∂_q) on \mathbb{C}^2 is lifted along Ψ to vector field $\xi = -X^2 \partial_X - zX \partial_z$ (resp. $\eta = X \partial_z$) on $\mathbb{H} \times \mathbb{C}^\times$. Thus, $M = \partial_p \otimes \partial_q - \partial_q \otimes \partial_p$ is lifted to $P = RC = \xi \otimes \eta - \eta \otimes \xi$ and ξ and η commute. Hence,

$$F \star_{RC} G = m \exp(hRC).(F \otimes G) = \sum_{n=0}^{\infty} \frac{h^n}{n!} m(RC)^n.(F \otimes G)$$

is a deformation of $\text{Hol}(\mathbb{H} \times \mathbb{C}^\times)$.

Theorem 1. Let $k, l \in \mathbb{Z}$, $n \in \mathbb{N}$. Assume that $k > 0$ or $l > 0$ or $k < 0$, $l \leq 0$, $n < \max\{1 - k, 1 - l\}$ or $k, l \leq 0$, $n > 1 - k - l$. Then for all $f, g \in \text{Hol}(\mathbb{H})$ and $F = X^k f, G = X^l g$ we have

$$(n!)^{-1} m(RC)^n.(F \otimes G) = [F, G]_{RC}^n.$$
The embedding $\Psi : \mathbb{H} \times \mathbb{C}^\times \hookrightarrow \mathbb{C}^2$ is $SL(2,\mathbb{R})$-equivariant, where the left action on $\mathbb{C}^2 = \{(q,p)\}$ is the standard action of matrices on vectors. The mapping

$$M = \partial_q \otimes \partial_q - \partial_q \otimes \partial_p \in \text{End}_C(\mathcal{H}ol(\mathbb{C}^2) \otimes \mathcal{H}ol(\mathbb{C}^2))$$

commutes with the action of $SL(2,\mathbb{R})$, or, equivalently, of the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$. Hence, the Moyal deformation is $SL(2,\mathbb{R})$-equivariant. This implies and can be checked directly that

$$RC = \xi \otimes \eta - \eta \otimes \xi \in \text{End}_C(\mathcal{H}ol(\mathbb{H} \times \mathbb{C}^\times) \otimes \mathcal{H}ol(\mathbb{H} \times \mathbb{C}^\times))$$

commutes with the action of $\mathfrak{sl}(2,\mathbb{R})$ and $SL(2,\mathbb{R})$. Thus,

$$\ast_{RC} : \mathcal{H}ol(\mathbb{H} \times \mathbb{C}^\times) \otimes \mathcal{H}ol(\mathbb{H} \times \mathbb{C}^\times) \rightarrow \mathcal{H}ol(\mathbb{H} \times \mathbb{C}^\times)[[h]]$$

is a homomorphism of $SL(2,\mathbb{R})$-modules. Accordingly to El Gradechi [2, Proposition 3.11] if the hypotheses on (k,l,n) hold, then there is only 1-dimensional vector space of $SL(2,\mathbb{R})$-equivariant bidifferential operators

$$(\mathcal{H}ol(\mathbb{H}), |k \rangle \otimes (\mathcal{H}ol(\mathbb{H}), |l \rangle) \rightarrow (\mathcal{H}ol(\mathbb{H}), |k+2n \rangle)$$.

Both maps $f \otimes g \mapsto (n!)^{-1}m(RC)^n.(X^k f \otimes X^l g)$ and $f \otimes g \mapsto [X^k f, X^l g]_{RC}^n$ belong to this space, therefore, they are proportional. One checks that the proportionality constant is 1. In fact, evaluate both operators on the following $f \otimes g$. If $k = l = n = 0$ take $f = g = 1$. If $k > 0$ or $k < 0$, $k \leq l \leq 0$, $n < 1 - k$ take $f = 1, g = z^n$. If $l > 0$ or $l < 0$, $l \leq k \leq 0$, $n < 1 - l$ take $f = z^n, g = 1$. If $k, l \leq 0$ and $n > 1 - k - l$ choose $r, s \in \mathbb{N}$, such that $r + s = n, r + k > 0$ and $s + l > 0$, and take $f(z) = z^r$ and $g(z) = z^s$ (use coordinates (q,p) to make the computations easier).

Corollary 2. The Rankin–Cohen deformation \ast_{RC} restricted to $A \otimes A \rightarrow A[[h]]$, $X^k f \otimes X^l g \mapsto \sum_{n=0}^{\infty} h^n [X^k f, X^l g]_{RC}^n.$

Proof. For all $(k,l,n) \in \mathbb{N}^3$ the statement follows from Theorem 1 except for $(k,l,n) = (0,0,1)$. In the latter case $[f,g]_1 = 0 = m(RC)(f \otimes g)$ for all $f, g \in \mathcal{H}ol(\mathbb{H})$.

References

