Constructive description of G-monogenic mappings in the algebra of complex quaternions

Tetyana Kuzmenko

(Institute of Mathematics of NAS, Kyiv) E-mail: kuzmenko.ts150gmail.com

Let $\mathbb{H}(\mathbb{C})$ be the quaternion algebra over the field of complex numbers \mathbb{C} , whose basis consists of the unit 1 of the algebra and of the elements I, J, K satisfying the multiplication rules:

$$I^2=J^2=K^2=-1,$$

$$IJ=-JI=K, \quad JK=-KJ=I, \quad KI=-IK=J.$$

τ2

In the algebra $\mathbb{H}(\mathbb{C})$ there exists another basis $\{e_1, e_2, e_3, e_4\}$ such that multiplication table in a new basis can be represented as

•	$ e_1 $	e_2	e_3	e_4
e_1	e_1	0	e_3	0
e_2	0	e_2	0	e_4
e_3	0	e_3	0	e_1
e_4	e_4	0	e_2	0

The unit of the algebra can be decomposed as $1 = e_1 + e_2$.

Let us consider the vectors

$$i_1 = e_1 + e_2, \quad i_2 = a_1 e_1 + a_2 e_2, \quad i_3 = b_1 e_1 + b_2 e_2,$$
 (1)

where $a_k, b_k \in \mathbb{C}, k = 1, 2$, which are linearly independent over the field of real numbers \mathbb{R} . It means that the equality $\alpha_1 i_1 + \alpha_2 i_2 + \alpha_3 i_3 = 0$ for $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ holds if and only if $\alpha_1 = \alpha_2 = \alpha_3 = 0$.

In the algebra $\mathbb{H}(\mathbb{C})$ we consider the linear span

$$E_3 := \{ \zeta = xi_1 + yi_2 + zi_3 : x, y, z \in \mathbb{R} \}$$

generated by the vectors i_1, i_2, i_3 over the field \mathbb{R} .

In the paper [1] we introduced a new class of quaternionic mappings, so-called, G-monogenic mappings.

A continuous mapping $\Phi : \Omega_{\zeta} \to \mathbb{H}(\mathbb{C})$ (or $\widehat{\Phi} : \Omega_{\zeta} \to \mathbb{H}(\mathbb{C})$) is right-G-monogenic (or left-Gmonogenic) in a domain $\Omega_{\zeta} \subset E_3$, if Φ (or $\widehat{\Phi}$) is differentiable in the sense of the Gâteaux at every point of Ω_{ζ} , i. e. for every $\zeta \in \Omega_{\zeta}$ there exists an element $\Phi'(\zeta) \in \mathbb{H}(\mathbb{C})$ (or $\widehat{\Phi}'(\zeta) \in \mathbb{H}(\mathbb{C})$) such that

$$\lim_{\varepsilon \to 0+0} \left(\Phi(\zeta + \varepsilon h) - \Phi(\zeta) \right) \varepsilon^{-1} = h \Phi'(\zeta) \quad \forall h \in E_3$$

(or
$$\lim_{\varepsilon \to 0+0} \left(\widehat{\Phi}(\zeta + \varepsilon h) - \widehat{\Phi}(\zeta) \right) \varepsilon^{-1} = \widehat{\Phi}'(\zeta) h \quad \forall h \in E_3$$
)

We introduce linear functionals $f_1 : \mathbb{H}(\mathbb{C}) \to \mathbb{C}$ and $f_2 : \mathbb{H}(\mathbb{C}) \to \mathbb{C}$ by setting

 $f_1(e_1) = f_1(e_3) = 1,$ $f_1(e_2) = f_1(e_4) = 0,$ $f_2(e_2) = f_2(e_4) = 1,$ $f_2(e_1) = f_2(e_3) = 0.$

Denote by $f_k(E_3) := \{f_k(\zeta) : \zeta \in E_3\}$ for k = 1, 2.

Note that the points $(x, y, z) \in \mathbb{R}^3$ corresponding to the non-invertible elements $\zeta = xi_1 + yi_2 + zi_3 \in$ E_3 lie on the straight lines

$$L^1: x + y \operatorname{Re} a_1 + z \operatorname{Re} b_1 = 0, \qquad y \operatorname{Im} a_1 + z \operatorname{Im} b_1 = 0,$$

$$L^2$$
: $x + y \operatorname{Re} a_2 + z \operatorname{Re} b_2 = 0$, $y \operatorname{Im} a_2 + z \operatorname{Im} b_2 = 0$

in the three-dimensional space \mathbb{R}^3 .

Denote by

$$D_1 := f_1(\Omega_{\zeta}) \subset \mathbb{C}, \qquad D_2 := f_2(\Omega_{\zeta}) \subset \mathbb{C}.$$

In the following theorems we established constructive description of all G-monogenic mappings using four analytic functions of the complex variable.

Theorem 1. Let a domain Ω be convex in the direction of the straight lines L^1 and L^2 and let $f_1(E_3) = f_2(E_3) = \mathbb{C}$. Then every right-G-monogenic mapping $\Phi : \Omega_{\zeta} \to \mathbb{H}(\mathbb{C})$ has the form

$$\Phi(\zeta) = F_1(\xi_1)e_1 + F_2(\xi_2)e_2 + F_3(\xi_1)e_3 + F_4(\xi_2)e_4,$$

where F_1 and F_3 are functions of the variable $\xi_1 := x + ya_1 + zb_1$ analytic in the domain D_1 , and F_2 and F_4 are functions of the variable $\xi_2 := x + ya_2 + zb_2$ analytic in the domain D_2 .

Theorem 2. Let a domain Ω be convex in the direction of the straight lines L^1 and L^2 and let $f_1(E_3) = f_2(E_3) = \mathbb{C}$. Then every left-G-monogenic mapping $\widehat{\Phi} : \Omega_{\zeta} \to \mathbb{H}(\mathbb{C})$ has the form

$$\widehat{\Phi}(\zeta) = \widehat{F}_1(\xi_1)e_1 + \widehat{F}_2(\xi_2)e_2 + \widehat{F}_3(\xi_2)e_3 + \widehat{F}_4(\xi_1)e_4,$$

where \widehat{F}_1 and \widehat{F}_4 are functions of the variable $\xi_1 := x + ya_1 + zb_1$ analytic in the domain D_1 , and \widehat{F}_2 and \widehat{F}_3 are functions of the variable $\xi_2 := x + ya_2 + zb_2$ analytic in the domain D_2 .

Rerefences

[1] V.S. Shpakivskyi, T.S. Kuzmenko. On one class of quaternionic mappings. Ukr. Math. J., 68(1): 127-143, 2016.