Orientations of trees and signed Markov graphs

Sergiy Kozerenko

(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine) E-mail: kozerenko@univ.kiev.ua

For every vertex map $\sigma : V(X) \to V(X)$ on a finite tree X one can construct its Markov graph $\Gamma(X, \sigma)$ which is a digraph that encodes σ -covering relation between edges in X. By definition, $\Gamma(X, \sigma)$ has a vertex set equals the edge set E(X) of X and for every edge $uv \in E(X)$ its out-neighbourhood in $\Gamma(X, \sigma)$ equals the edge set $E([\sigma(u), \sigma(v)]_X)$ of a unique shortest $\sigma(u) - \sigma(v)$ path in X.

Let $\tau : E(X) \to V(X)$ be an orientation of a tree X. For each non-constant map $\sigma : V(X) \to V(X)$ the orientation τ defines a map $s_{\tau} : A(\Gamma(X, \sigma)) \to \{1, -1\}$ in such a way that $s_{\tau}(e_1, e_2) = 1$, if $pr_{e_2}(\sigma(\tau(e_1))) = \tau(e_2)$ and $s_{\tau}(e_1, e_2) = -1$, otherwise. The pair $\Gamma^{\tau}(X, \sigma) = (\Gamma(X, \sigma), s_{\tau})$ is the signed Markov graph of σ . Denote by $M_{\Gamma^{\tau}(X,\sigma)}$ the adjacency matrix of $\Gamma^{\tau}(X, \sigma)$. If σ is a constant map, then by definition $M_{\Gamma^{\tau}(X,\sigma)}$ is a null matrix. It is well-known (see [1, 2]) that for any fixed orientation τ of X the correspondence $\sigma \to M_{\Gamma^{\tau}(X,\sigma)}$ establishes a homomorphism from the full transformation semigroup T_n to the matrix semigroup $Mat_{n-1}(\mathbb{Z})$. Note that this correspondence is "almost" injective in the sense that $M_{\Gamma^{\tau}(X,\sigma_1)} = M_{\Gamma^{\tau}(X,\sigma_2)}$ if and only if $\sigma_1 = \sigma_2$ or σ_1 and σ_2 are both constant maps.

Theorem 1. [3] For any orientation τ and a map σ the trace of $M_{\Gamma^{\tau}(X,\sigma)}$ equals $|fix\sigma| - 1$, where $fix \sigma$ is the set of σ -fixed points.

A map σ is called τ -positive provided $s_{\tau} \equiv 1$. Similarly, one can define τ -negative maps. By definition constant maps are τ -positive and τ -negative for all orientations τ .

Proposition 2. A map σ is τ -positive for all τ if and only if σ is a projection on some connected set of vertices. Similarly, σ is τ -positive for all τ if and only if σ is constant.

For a map σ an edge $uv \in E(X)$ is called σ -positive (σ -negative) if $pr_{uv}(\sigma(u)) = u$ and $pr_{uv}(\sigma(v)) = v$ ($pr_{uv}(\sigma(u)) = v$ and $pr_{uv}(\sigma(v)) = u$). Denote by $p(X, \sigma)$ and $n(X, \sigma)$ the number of σ -positive and σ -negative edges in X, respectively.

Proposition 3. If a map σ is τ -positive (τ -negative) for some τ , then $n(X, \sigma) = 0$ ($p(X, \sigma) = 0$).

A map σ is called *metric* if $d_X(\sigma(u), \sigma(v)) \leq d_X(u, v)$ for all pairs of vertices $u, v \in V(X)$. It is easy to see that σ is metric if and only if $[\sigma(u), \sigma(v)]_X \subset \sigma([u, v]_X)$ for all $u, v \in V(X)$. A map σ is called *linear* provided $\sigma([u, v]_X) \subset [\sigma(u), \sigma(v)]_X$ for all $u, v \in V(X)$.

Proposition 4. Let σ be a metric or a linear map. Then $n(X, \sigma) \leq 1$. Moreover, the equality $n(X, \sigma) = 1$ implies $p(X, \sigma) = 0$.

Theorem 5. Let σ be a metric or a linear map. If $n(X, \sigma) = 0$, then there exists an orientation τ such that σ is τ -positive. Similarly, if $n(X, \sigma) = 1$ (and thus $p(X, \sigma) = 0$), then there is τ such that σ is τ -negative.

Rerefences

- [1] Chris Bernhardt. Vertex maps for trees: algebra and periods of periodic orbits. Discrete Contin. Dyn. Syst., 14(3) : 399-408, 2006.
- [2] Bau-Sen Du. On the class of similar square $\{-1, 0, 1\}$ -matrices arising from vertex maps on trees. Preprint, arXiv:1503.04568, 2015.
- [3] Sergiy Kozerenko. Discrete Markov graphs: loops, fixed points and maps preordering. J. Adv. Math. Stud., 9(1): 99-109, 2016.