On projective classes of rational functions

Konovenko Nadiia

(Department of Mathematics, ONAFT, Odessa, Ukraine) E-mail: konovenko@ukr.net

Lychagin Valentin (Department of Mathematics, University of Tromsö, Norway) E-mail: valentin.lychagin@uit.no

We study equivalence classes of rational functions on Riemann's sphere $\overline{\mathbb{C}}$ with respect to Möbius transformations (cf. [1]). The Lie group $\mathbf{SL}_2(\mathbb{C})$ acts on $\overline{\mathbb{C}}$ and the corresponding representations of Lie algebra $\mathbf{sl}_2(\mathbb{C})$ is given by the vector fields

$$\mathbf{sl}_2(\mathbb{C}) = \langle \frac{\partial}{\partial z}, \quad z \frac{\partial}{\partial z}, \quad z^2 \frac{\partial}{\partial z} \rangle.$$

Denote by J^k the manifold of k-jets of analytical functions on $\overline{\mathbb{C}}$, and let (z, u, u_1, \ldots, u_k) be the natural (local) coordinates on J^k .

Then a rational function I on the manifold J^k we call a projective invariant of order $\leq k$, if $X^{(k)}(I) = 0$, for all vector fields $X \in \mathbf{sl}_2(\mathbb{C})$. Here we denoted by $X^{(k)}$ the k-th prolongations of the vector field X.

Theorem 1. The field of rational differential invariants of order < k is generated by invariants

$$J_0 = u,$$
 $J_3 = u_1^{-3}u_3 - \frac{3}{2}u_2^2u_1^{-4},$

and invariant derivatives

$$J_4 = \nabla(J_3), \quad \dots, \quad J_k = \nabla^{k-3}(J_3),$$

where $\nabla = u_1^{-1} \frac{d}{dz}$. This field separates regular $\mathbf{SL}_2(\mathbb{C})$ orbit.

For given rational function f = f(z) we denote $J_3(f)$ the value of the projective invariant J_3 on f.

The transcendent degree of the field of rational functions on the Riemann sphere equals one, and therefore between functions f and $J_3(f)$ there is an algebraic relation

$$R(f, J_3(f)) = 0. (1)$$

The polynomial R_f , which satisfies (1) and having the smallest degree, we call generating polynomial for f.

Theorem 2. (1) The projective class of a rational function f(z) is defined by the generating polynomial $R_{f}(f, J_{3}(f)).$

(2) Two rational functions f(z), q(z) are projectively equivalent if and only if the function q(z) is a solution of the following ordinary differential equation:

$$R_f\left(u, u_1^{-3}u_3 - \frac{3}{2}u_2^2 u_1^{-4}\right) = 0.$$
⁽²⁾

Remark that this differential equation is so-called automorphic equation in the sense that the Möbius group $\mathbf{PSL}_2(\mathbb{C})$ acts in a transitive way on the solution space of differential equation (2).

In particular, all solutions of differential equation (2) are rational functions.

Example 3. (1) Solutions of the following differential equation

$$(D+4au)^2(2u_1u_3-3u_2^2)+12a^2u_1^4=0$$

are rational functions that are projectively equivalent to polynomials of the second degree $f(z) = az^2 + bz + c$ with given discriminant D and leading coefficient a. Remark that $\frac{D}{a}$ is a projective invariant. (2) Solutions of differential equation

$$(u^2 - 4)(2u_1u_3 - 3u_2^2) + 12u_1^4 = 0$$

are rational functions which are projectively invariant to the Jukowski function $f(z) = z + z^{-1}$.

Rerefences

[1] N. Konovenko. Differential invariants and sl₂ - geometries. Kiev: "Naukova Dumka" NAS of Ukraine, 2013, 192 p.