Artin-Schreier coverings, Galois representations and density Sato-Tate distribution functions

Nikolaj Glazunov (National Aviation University) *E-mail:* glanm@yahoo.com

Let k be a field of characteristic p > 0 and let X be a nonsingular projective variety defined over k. In most cases $k = \mathbb{F}_q, q = p^s$ for some positive integer s.

An Artin-Schreier covering of X is a finite morphism $\pi: Y \to X$ from a normal variety Y onto X such that the field extension k(Y)/k(X) is an Artin-Schreier extension. This extension is defined by the Artin-Schreier equation $y^p - y = f$ and $f \in k(X)$.

Example 1. The equation in affine form $y^p - y = cx + \frac{d}{x}$, $c, d \in \mathbb{F}_p^*$ defines an Artin-Schreier covering of the projective line.

Example 2. The equation in affine form $y^p - y = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$, $a_i \in \mathbb{F}_p$ defines an Artin-Schreier curve and the respective covering of the projective line.

Proposition 3. See [1, 5]. Let X be reduced absolutely irreducible nonsingular projective algebraic curve of genus g defined over a finite field \mathbb{F}_q . Let $\overline{\mathbb{F}}_q$ be an algebraic closure of \mathbb{F}_q . We may regard X as an algebraic curve over $\overline{\mathbb{F}}_q$. In this case on can attach to X the Jacobean J(X) of X. Formal completion of the variety defines the commutative formal group F of dimension g.

Proposition 4. Under the conditions of the Proposition 3 there is an algebraic construction of the continuation of the Artin-Schreier covering $\pi: Y \to X$ to the map $\pi': J(Y) \to J(X)$.

Let l be a prime such that $l \neq p$. Let $T_l(A)$ be the Tate module of the abelian variety A. In the case of the Jacobean J(X) the Tate module is a free module of the rank 2g over l-adic numbers.

Example 5. For any two abelian varieties A_1 and A_2 the canonical homomorphism

$$h_l: Hom(A_1, A_2) \to Hom_{\mathbb{Z}_l}(T_l(A_1), T_l(A_2))$$

is an l-adic representation.

As the formal completion of an abelian variety defines a commutative formal group law (formal group) [2] F, present here some our results about homomorphisms of the groups over local and finite fields.

Let \mathcal{O} be the complete discrete valuation ring of characteristic 0 with maximal ideal $\mathcal{M} = \pi \mathcal{O}$ so the residue field $k = \mathcal{O}/\mathcal{M}$ has characteristic p > 0. Let dimensions of formal groups F and G over \mathcal{O} equal respectively n and m. Let $M_{nm}(\mathcal{O})$ be the ring of $n \times m$ matrices over \mathcal{O} .

Proposition 6. Lubin homomorphism $c : Hom_{\mathcal{O}}(F, G) \to M_{nm}(\mathcal{O})$ is the injection.

Let $Iso_R(F,G)$ be the set of isogenies from F to G over a commutative ring R.

Lemma 7. If heights of group laws F and G are different then the set $Iso_k(F,G)$ is empty.

Let F^* be the reduction of F by $mod \mathcal{M}$.

Proposition 8. The mapping $*: Iso_{\mathcal{O}}(F, G) \to Iso_k(F^*, G^*)$ is the injection if $[p]^*$ is the isogeny.

Definition 9. Let

be a Kloosterman sum.

Proposition 10. The Kloosterman sum $T_p(c, d)$ is defined by the Artin-Schreier covering

$$y^p - y = cx + \frac{d}{x}, \qquad c, d \in \mathbb{F}_p^*.$$

By A. Weil estimate $T_p(c,d) = 2\sqrt{p}\cos\theta_p(c,d)$.

- There are possible two distributions of angles $\theta_p(c, d)$ on semiinterval $[0, \pi)$:
 - a) p is fixed and c and d varies over \mathbf{F}_p^* ; what is the distribution of angles $\theta_p(c,d)$ as $p \to \infty$;
 - b) c and d are fixed and p varies over all primes not dividing c and d.

For the case a) N. Katz [3] and A. Adolphson [4] for few others sums proved that θ are distributed on $[0, \pi)$ with the Sato-Tate density $\frac{2}{\pi} \sin^2 t$.

Conjecture 11. In the case b) when p varies over all primes then angles $\theta_p(1,1)$ are distributed on the interval $[0,\pi)$ with the Sato-Tate density $\frac{2}{\pi}\sin^2 t$.

Rerefences

- [1] David Mumford. Abelian Varieties. Tata Institute of Fundamental Research Publications, 2012, vol. 13, 263 p.
- [2] Michiel Hazewinkel. Formal Groups and Applications, Providence, Rhode Island, Academic Press, 2012.
- [3] Nicholas Katz. Gauss sums, Kloosterman sums, and monodromy groups. Princeton university press, 1988, 246 p.
- [4] Alan Adolphson. On the distribution of angles of Kloosterman sums. Journ. rein. angew. Math., 1989, vol. 395, P. 214-220.
- [5] Nikolaj Glazunov. Extremal forms and rigidity in arithmetic geometry and in dynamics, Chebyshevskii Sbornik, 2015, vol.16, no. 3, P. 124-146.