Some cardinal and topological properties of N^{φ}_{τ} -kernel of a topological space X and superextensions

Beshimov R.B.

(National University of Uzbekistan, Tashkent, Uzbekistan) *E-mail:* rbeshimov@mail.ru

Mukhamadiev F.G.

(Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan) *E-mail:* farkhod8717@mail.ru

A system $\xi = \{F_{\alpha} : \alpha \in A\}$ of closed subsets of a space X is called *linked* if any two elements from ξ intersect. Any linked system can be complemented to a maximal linked system (MLS), but this complement is, as a rule, not unique [1].

Proposition 1. [1]. A linked system ξ of a space X is a MLS iff it possesses the following completeness property: if a closed set $A \subset X$ intersects with any element form ξ , then $A \in \xi$.

Denote by λX the set of all MLS of the space X. For an open set $U \subset X$, set

 $O(U) = \{\xi \in \lambda X : \text{ there is an } F \in \xi \text{ such that } F \subset U\}.$

The family of subsets in the form of O(U) covers the set λX ($O(X) = \lambda X$), that's why it forms an open subbase of the topology on λX . The set λX equipped with this topology is called *the superextension* of X.

A.V. Ivanov defined the space NX of complete linked systems (CLS) of a space X in a following way:

Definition 2. A linked system M of closed subsets of a compact X is called *a complete linked system* (a CLS) if for any closed set of X, the condition

• any neighborhood OF of the set F consists of a set $\Phi \in M$ implies $F \in M$, [2].

A set NX of all complete linked systems of a compact X is called the space NX of CLS of X. This space is equipped with the topology, the open basis of which is formed by sets in the form of

$$\begin{split} E &= O(U_1, U_2, \dots, U_n) \langle V_1, V_2, \dots, V_s \rangle \\ &= \{ M \in NX : \text{for any } i = 1, 2, \dots, n \text{ there exists } F_i \in M \text{ such that } F_i \subset U_i \\ &\text{ and for any } j = 1, 2, \dots, s, \ F \cap V_j \neq \emptyset \text{ for any } F \in M \}, \end{split}$$

where $U_1, U_2, \ldots, U_n, V_1, V_2, \ldots, V_s$ are nonempty open in X sets [2].

Definition 3. Let X be a compact space, φ be a cardinal function and τ be an arbitrary cardinal number. We call an N_{τ}^{φ} - kernel of a topological space X the space

$$N^{\varphi}_{\tau}X = \{ M \in NX : \exists F \in M : \varphi(F) \le \tau \}.$$

Theorem 4. Let X be a normal topological space and $h\varphi(X) \leq \tau$. Then the following assertions are equivalent:

1) $t(\lambda(\lambda X)) \leq \aleph_0;$ 2) $t(\lambda(X \times X)) \leq \aleph_0;$ 3) X is metrizable; 4) λX is metrizable; 5) $N^{\varphi}_{\tau}X$ is metrizable.

References

- [1] Fedorchuk V. V., Filippov V. V. General Topology. Basic Constructions. Fizmatlit, Moscow, 2006.
- [2] Ivanov A. V. A space of complete linked systems, volume 27 of Siberian Mathematical Journal. 1986. pp. 863-875.