Some applications of the discriminant and resonance sets of a real polynomial

Alexander Batkhin

(Keldysh Institute of Applied Mathematics of RAS (Moscow), & Moscow Institute of Physics and Technology (Dolgoprudny), Russia)

E-mail: batkhin@gmail.com

Let $f_n(x)$ be a monic polynomial of degree n with real coefficients $f_n(x) \equiv x^n + a_1 x^{n-1} + \cdots + a_n$. The *n*-dimensional space $\Pi \equiv \mathbb{R}^n$ of its coefficients $\mathbf{P} = (a_1, \ldots, a_n)$ is called the *coefficient space* of $f_n(x)$. A pair of roots $t_i, t_j, i, j = 1, \ldots, n, i \neq j$, of $f_n(x)$ is called p: q-commensurable if $t_i: t_j = p: q$.

Definition 1. Resonance set $\mathcal{R}_{p:q}(f_n)$, $p \in \mathbb{Z} \setminus \{0\}$, $q \in \mathbb{N}$ of $f_n(x)$ is called the set of all points of the coefficient space Π at which $f_n(x)$ has at least a pair of p:q-commensurable roots, i.e.

$$\mathcal{R}_{p:q}(f_n) = \{ \mathbf{P} \in \Pi : \exists i, j = 1, \dots, n, t_i : t_j = p : q \}.$$
(1)

The special case of $\mathcal{R}_{p:q}(f_n)$ at the p = q = 1 is so called *discriminant set* $\mathcal{D}(f_n)$, playing an important role in solution of many problems.

The polynomial $f_n(x)$ has a pair of p: q-commensurable roots iff the pair of polynomials $f_n(px)$ and $f_n(qx)$ has at least one common root, or in terms of resultant $\operatorname{Res}_x(f_n(px), f_n(qx)) = 0$. In the case when p = q both polynomials $f_n(px)$ and $f_n(qx)$ have exactly n common roots. In case $a_n = 0$ one of the root is equal to zero, therefore resultant can be written in the form $\operatorname{Res}_x(f_n(px), f_n(qx)) =$ $a_n(p-q)^n \operatorname{GD}_{p:q}(f_n)$, where $\operatorname{GD}_{p:q}(f_n)$ is so called *generalized discriminant* of the polynomial $f_n(x)$ introduced in [1].

Definition 2. The chain $\operatorname{Ch}_{p;q}^{(k)}(t_i)$ of p:q-commensurable roots of length k (shortly chain of roots) is called the finite part of geometric progression with common ratio p/q and scale factor t_i , each member of which is a root of polynomial $f_n(x)$. The value t_i is called the generating root.

The detail structure of the resonance set (1) can be described with the help of so called *i*-th generalized subdiscriminants $\text{GD}_{p:q}^{(i)}(f_n)$, which are nontrivial factors of *i*-th subresultants of pair of polynomials $f_n(px)$ and $f_n(qx)$. Such subresultants can be computed as *i*-th inners of Sylvester matrix constructed from the coefficients of mentioned above polynomials. For more details see [2].

Theorem 3. Polynomial $f_n(x)$ has exactly n - d different chains of roots $\operatorname{Ch}_{p;q}^{(i)}(t_j)$, $j = 1, \ldots, n - d$ iff in the sequence $\{\operatorname{GD}_{p;q}^{(i)}(f_n), i = 0, \ldots, n - 1\}$ of *i*-th generalized subdiscriminants of $f_n(x)$ the first nonzero subdiscriminant is d-th generalized subdiscriminant $\operatorname{GD}_{p;q}^{(d)}(f_n)$.

Consider a partition $\lambda = [1^{n_1}2^{n_2}\dots i^{n_i}\dots]$ of $n \in \mathbb{N}$. Partition functions p(n) and $p_l(n)$ return the number of all partitions and the number of all partitions of the length l of $n \in \mathbb{N}$ respectively. The value i in the partition λ defines the length of chain $\operatorname{Ch}_{p:q}^{(i)}(t_i)$ for a corresponding generating root t_i , the value n_i defines the number of different generating roots, which give the chains of root of the length i. Any partition λ of number n defines a certain structure of p: q-commensurable roots of this polynomial and it corresponds to some algebraic variety \mathcal{V}_l^i , $i = 1, \dots, p_l(n)$ of dimension l in the coefficient space Π . The number of such varieties of dimension l is equal to $p_l(n)$ and total number of all varieties consisting the resonance set $\mathcal{R}_{p:q}(f_n)$ is equal to p(n) - 1.

Parametrization of variety \mathcal{V}_1 can be expressed in *q*-binomial (Gaussian) coefficients:

$$a_{i} = (-1)^{i} \begin{bmatrix} n \\ i \end{bmatrix}_{q} p^{\frac{1}{2}i(i-1)} q^{\frac{1}{2}i(2n-i(i+1))} t_{1}^{i}, \quad i = 1, \dots, n, \text{ where } \begin{bmatrix} n \\ k \end{bmatrix}_{q} = \prod_{i=1}^{k} \frac{q^{n-i+1}-1}{q^{i}-1}.$$

Computation of parametric representation of any variety \mathcal{V}_l , $2 \leq l \leq n-1$, from the resonance set $\mathcal{R}_{p:q}(f_n)$ is based on the following

Theorem 4 ([3]). Let \mathcal{V}_l , dim $\mathcal{V}_l = l < n-1$, be a variety on which polynomial $f_n(x)$ has l different chains of p: q-commensurable roots and the chain generated by the root t_1 has length m > 1. Let denote by $\mathbf{r}_l(t_1, t_2, \ldots, t_l)$ parametrization of variety \mathcal{V}_l . Therefore the following formula

$$\mathbf{r}_{l+1}(t_1,\ldots,t_l,t_{l+1}) = \mathbf{r}_l(t_1,\ldots,t_l) + \frac{p\left(t_{l+1} - p^{m-1}t_1\right)}{t_1\left(p^m - q^m\right)} \left[\mathbf{r}_l(t_1,\ldots,t_l) - \mathbf{r}_l((q/p)t_1,\ldots,t_l)\right]$$
(2)

gives parametrization of the part of variety \mathcal{V}_{l+1} , on which there exists $\operatorname{Ch}_{p:q}^{(m-1)}(t_1)$, simple root t_{l+1} and other chains of roots are the same as on the initial variety \mathcal{V}_l .

From the geometrical point of view Theorem 4 means that a part of variety \mathcal{V}_{l+1} is formed as a ruled l+1-dimensional surface by the secant lines, which cross its directrix \mathcal{V}_l at two points defined by such values of parameters t_1^1 and t_1^2 that $t_1^1: t_1^2 = q: p$. At $p/q \to 1$ mentioned above ruled surface becomes a tangent ruled surface which parametrization is $\mathbf{r}_{l+1} = \mathbf{r}_l + m^{-1}(t_{l+1} - t_1)\partial\mathbf{r}_l/\partial t_1$. If $f_n(x)$ has on the variety \mathcal{V}_{l+1} a pair of complex-conjugate roots it is necessary to make continuation of obtained parametrization (2). Finally, it is possible to pass from variety with two chains of roots of length k to a variety with a chain of roots of length 2k. Thus, combining the mentioned above procedure one can state the following

Theorem 5 ([3]). Resonance set $\mathcal{R}_{p:q}(f_n)$ of a real polynomial $f_n(x)$ for a certain value of commensurability coefficient p:q allows polynomial parametrization of each variety $\mathcal{V}_l \subset \mathcal{R}_{p:q}(f_n), l = 1, \ldots, n-1$.

The software library for computation of the resonance set $\mathcal{R}_{p:q}(f_n)$ was implemented for CAS Maple. The above results were effectively used in solving the following problems.

- (1) The resonance set $\mathcal{R}_{p:q}(f_3)$ of a cubic was completely described and an outline of investigation of formal stability of a stationary point of a multiparameter Hamiltonian system with three degrees of freedom was proposed [4].
- (2) The discriminant set of a real cubic polynomial was used in computation of global parametrization of one real variety Ω that plays an important role in the investigation of the normalized Ricci flow on generalized Wallach spaces related to invariant Einstein metrics [5].
- (3) Parametric representation of the discriminant set $\mathcal{D}(f_4)$ of a quartic allows to find the set of stability of the linearized multiparameter Hamiltonian system with 4 degrees of freedom [6].

This talk is devoted to the description of the resonance $\mathcal{R}_{p:q}(f_4)$ and discriminant $\mathcal{D}(f_4)$ sets of a real quartic $f_4(x)$ and their application to the problem (3) in nonlinear case.

REREFENCES

- Alexander Batkhin. Segregation of stability domains of the Hamilton nonlinear system. Automation and Remote Control, 74(8): 1269-1283, 2013. DOI: 10.1134/S0005117913080043
- [2] Alexander Batkhin. Parameterization of the discriminant set of a polynomial. Progr. & Comp. Soft., 42(2): 65-76, 2016. DOI: 10.1134/S0361768816020031
- [3] Alexander Batkhin. Structure of the resonance set of a real polynomial. Preprints of KIAM, No 29, 2016. (in Russian) DOI: 10.20948/prepr-2016-29
- [4] Alexander Batkhin. Resonance set of a polynomial and problem of formal stability. Science Journal of Volgograd State University. Mathematics. Physics, No 4(35): 6-24, 2016. (in Russian) DOI: 10.15688/jvolsu1.2016.4.1
- [5] Alexander Batkhin. A real variety with boundary and its global parameterization. Progr. & Comp. Soft., 43(2): 75-83, 2016. DOI: 10.1134/S0361768817020037
- [6] Alexander Batkhin, Alexander Bruno and Victor Varin. Stability sets of multiparameter Hamiltonian systems. Journal of Applied Mathematics and Mechanics, 76(1): 56-92, 2012. DOI: 10.1016/j.jappmathmech.2012.03.006