SYNOPSIS

of the book
“VARIATIONAL METHODS IN NONLINEAR PROBLEMS OF
THE DYNAMICS OF A LIMITED LIQUID VOLUME”

by
I.A. Lukovsky and A.N. Timokha

CONTENTS

Introduction ... 5

Chapter 1: Basic free boundary problems in hydrodynamics of
a limited liquid volume with free surface 34

1.1. Governing equations, boundary and initial conditions 35
1.1.1. Conservation laws of continuum mechanics and governing equations 36
1.1.2. Strain energy and deformation tensors, their dependence 45
1.1.3. Rheological models of the fluids 57
1.1.4. Boundary and initial conditions 62
1.1.5. Geometric representation of the free surface. Two approaches in
 nonlinear dynamics of a limited liquid volume 66

1.2. Static and dynamic problems of a limited liquid volume.
 Linear sloshing. Stability ... 67
1.3. Applicability of a perfect liquid model to studying the dynamics and
 stability of the coupled “body-liquid” motions 70

Chapter 2: Variational principles and approximate methods in
nonlinear dynamics of a rigid body within cavities filled
partially by a liquid ... 75

2.1. Variational formulation of the nonlinear free boundary problems on
 liquid sloshing in an unmoving tank 76
2.2. Direct projective methods in nonlinear problems on liquid sloshing in
 an unmoving tank .. 80
2.2.1. Tanks of cylindrical shape near mean free surface 81
2.2.2. Tanks of complex shape .. 86
2.2.3. Variational equations in linear approximation. Natural (eigen)
 liquid sloshing ... 91

2.3. Variational formulation of nonlinear problems on liquid sloshing
 in a moving tank .. 96
2.4. Approximate methods for calculating the liquid sloshing in a moving
 tank. Stokes-Zhukovsky potentials and hydrodynamic force
 (moment) on the tank .. 101
2.5. Variational approach to derivation of the nonlinear equations of

the coupled “body-liquid” dynamics ... 119

CHAPTER 3: Mathematical models in nonlinear theory of wave motions of the “liquid–gas” interface in the presence of an acoustic field in the gas ... 131

3.1. Nonlinear initial-boundary problem on interaction of surface waves with acoustic fields ... 132

3.2. Asymptotic reduction of the original problem. Capillary-acoustic [quasi]-equilibria ... 136

3.3. “Natural liquid sloshing” relative to the capillary-acoustic equilibrium shapes ... 151

3.4. Stability of the capillary-acoustic equilibrium shapes (dynamic and static criteria). Acoustic stabilisation ... 159

3.5. The nonlinear initial-boundary problem on wave motions of the “liquid–gas” system under acoustic radiant loading in a moving tank and its asymptotic reduction ... 170

CHAPTER 4: Variational problems and methods in nonlinear theory of wave motions of the “liquid–gas” interface in the presence of an acoustic field in the gas ... 178

4.1. Basic variational problems ... 178

4.2. Asymptotic reduction of the variational problems 186

4.3. Variational stability criteria of the capillary-acoustic equilibrium shape ... 192

4.4. Approximate variational methods for the problem on the capillary-acoustic equilibrium shape ... 198

4.5. Basic variational formulation and projective methods in spectral problems on the natural liquid sloshing relative to capillary-acoustic equilibrium shapes ... 224

4.6. Variational methods in modal modeling of the liquid sloshing relative to capillary-equilibrium shape in a moving tank ... 244

CHAPTER 5: Mathematical models in nonlinear theory of the liquid sloshing in a high-frequency vibrating tank ... 260

5.1. Asymptotic reduction of the original nonlinear initial-boundary problem. Vibrocapillary equilibria ... 260

5.2. “Natural liquid sloshing” relative to the vibrocapillary equilibrium shape ... 267

5.3. Stability of the vibrocapillary equilibrium shape (static and dynamic criteria). Vibrostabilization and hydrodynamic instability ... 276

CHAPTER 6: Variational problems and methods in nonlinear theory of the liquid sloshing in a high-frequency vibrating tank ... 285
6.1. Asymptotic reduction of the variational problems 285
6.2. Variational stability criteria of the vibrocapillary equilibria 291
6.3. Basic variational formulations of the problems on natural liquid
sloshing relative to vibrocapillary equilibrium shapes 312

Chapter 7: Implementation of variational methods for solving
some applied problems on the dynamics of rigid bodies within
cavities filled by a liquid ... 315

7.1. Nonlinear modal equations of spatial motions of a rigid body within
cavities filled partially by a liquid 315
7.1.1. Explicit scalar form of nonlinear modal equations for the liquid
sloshing in circular and co-axial cylindrical tanks 316
7.1.2. Forced finite-amplitude liquid sloshing in a cylindrical tank 329
7.2. Acoustic pumping of a limited liquid volume in microgravity 347
7.3. Behavior of the free surface of a limited liquid volume in a cylindrical
tank due to its lateral high-frequency vibration. “Downfall” and
“re-orientation” .. 359

References ... 374

Summary

The book develops variational approaches to nonlinear free boundary
problems associated with dynamics of a limited liquid volume in a container (sloshing).
After announcing basic physical models used to describe nonlinear wave
motions of a liquid in a rigid tank Chapter 1 focuses on formulations of the
governing equations and boundary conditions of evolutional boundary problems
associated with dynamics of a limited volume of a perfect liquid with the
free surface in physical fields of various nature (gravity, surface tension, inertia,
acoustics and so on). Chapter 1 introduces also main mathematical definitions and denoting as well as delivers the standard terminology accepted in this
branch of hydrodynamics. Furthermore, the main book’s text dials with a se-
ries of variational approaches to three classes of the nonlinear free boundary
problems arising in spacecraft and microgravity technology. These are

1. The free boundary problem on nonlinear sloshing of an incompressible li-
quid with irrotational flows in a moving tank (coupled “rigid body-liquid”
motions) and its Lagrangian variational formulation; the projective meth-
ods with natural modal basis and numerical schemes for calculation of
hydrodynamic force (moment) on the tank (Chapter 2 and some exam-
ple in Chapter 7).

2. The nonlinear boundary problem on compressible interfacial potential
“gas-liquid” flows due to triad of the gravitation, the surface tension
and a steady acoustic field created in the gas domain and its variational Lagrange-type formulations; the asymptotic averaging reduction in the original and variational problems (Chapters 3 and 4).

3. Sloshing of a compressible perfect liquid in a rigid tank exposed to high-frequency translatory vibration, variational Lagrange-type formulation; the asymptotic averaging reduction in the original and variational problems (Chapters 5 and 6).

Introduction presents a detailed (32p.) survey on existing theoretical and experimental studies and Chapter 7 gives a set successful implementation of the theoretical results from Chapters 2-6 to some applied problems.

The main text in the theoretical chapters 2-6 is as follows:

- **Chapter 2** is devoted to the Bateman-Luke variational principle and its generalisations onto the liquid sloshing in a rigid tank. Following this principle the chapter derives the nonlinear free boundary problem on sloshing a perfect fluid in a moving tank. Effect of the surface tension is ignored. It is shown that, in contrast to the classical Lagrangian variational principle, this variational approach makes it possible to derive the full set of governing equations and boundary conditions (including so named kinematic and dynamic free boundary conditions on free (unknown) surface) from the necessary extrema condition. This point yields an attractive idea to develop variational projective (modal) methods based on this variational formulation. Authors realize this idea in by several steps. First, they consider the nonlinear free boundary problem on sloshing of a heavy liquid in an unmoving tank (nonlinear gravity waves in a closed basin) and derive corresponding infinite-dimensional modal system. Later on, the modal method is expanded onto the problem on sloshing in a tank performing known spatial motion (inertial waves). The explicit form of the infinite-dimensional systems of ordinary differential equations (modal systems) coupling generalised coordinates implying perturbation of the natural standing waves are derived. Finally, the method is generalized for the case of coupled “rigid body-liquid” motions. This modal system has six additional generalized coordinates implying spatial motions of the carrying body.

- **Chapter 3** is devoted to the theory of compressible interfacial potential “liquid-gas” flows under acoustic field, created by a vibrator posed in the gas domain over the interface (the problem on acoustic positioning). Authors formulate corresponding nonlinear initial-boundary problem and find up small parameters in normalised formulation of this problem. These small parameters appear near both the inhomogeneous terms and local pseudo-differential operators in the boundary conditions and governing equations. These quantities imply potential forces (gravity and surface
tension quantities). Physically, the same redistribution of small parameters in dynamic systems is established in the governing ordinary differential equations describing the pendulum dynamics due to external high-frequency loading. The pendulum vibrational problem was earlier analyzed by Kapitsa. He has shown that this dynamic system allows a multi-scale time technique in order to separate quick (high-frequency) pulsations and slow motions. After applying similar asymptotic procedure to the normalized interfacial problem authors derive a series of nonlinear and linear boundary value problems. When averaging acoustic pulsation in solutions of these problems they reduce asymptotically the original interfacial problem to the problem on the slow-time liquid sloshing under acoustic radiant pressure (asymptotic reduction). Mathematically, this problem is similar to the problem on sloshing in an unmoving basin considered in the previous chapter. However, the dynamic condition on the free surface includes an additional local nonlinear pseudo-differential operator implying the acoustic radiant loading. The acoustic pressure depends parametrically on the instantaneous shape of the interface and solution of the Neumann boundary value problem with respect to wave function in the instantaneous gas domain. The main part of the chapter contains description of the mathematical theory for this free boundary “sloshing” problem (with the nonlinear operator in the dynamic condition). First of all, authors introduce and analyse the concept of capillary-acoustic equilibria, namely, they consider static solutions of the derived nonlinear evolutional free boundary problem. It was shown, that these solutions (averaged interface shapes) are usually different from the capillary shapes. Authors present explicit analytical examples and, in addition, analyse their bifurcation in order to show, that corresponding static free boundary problem (capillary-acoustic equilibria) may have non-unique solution. Further, the spectral theory of linear (natural) sloshing relative to the capillary-acoustic equilibrium shapes is constructed. The spectral theorems establish the real pointer spectrum with only a finite number of negative eigenvalues. Whereas treating the stability of the hydrodynamic system by signs of the spectrum, this implies that breakdown of the equilibria may occur only due to a finite set of linearly independent interfacial perturbations. A number of analytical examples, given in the chapter showed that acoustic field can either stabilise or destabilize the interface. The result depends on the excitation frequency and the energy of the standing acoustic field in the gas. Finally, the last section gives the generalisation of the earlier mathematical results onto the case, when the tank moves in the space and inertial forces are of concern.

- The results in Chapter 4 are associated with variational approaches to the free boundary problems of the previous chapter. The analysis starts from generalisation of the variational approaches by Hamilton-Ostrogradsky, Bateman-Luke and Luke-Berdichevsky to the compressible potential flows with a free surface. First of all, the equivalence between the original inter-
facial problem of the chapter 3 and corresponding variational formulations is proved. Further, the multi-scale time separation technique (asymptotic reduction) is generalised onto variational statement and a potential implying quasi-potential energy is derived. Authors give the explicit form for both the first and second Frechet derivatives of this nonlinear static functional. The extremal points of this functional are reached on solutions of the static free boundary problems on the capillary-acoustic equilibrium shapes. It is shown that the spectrum of the Jacobi operator (derived from the second derivative) is positive, if and only if, the spectral problem of the previous chapter (on natural sloshing relative to capillary-acoustic equilibrium shape) is positive. Since functional of the quasi-potential energy has strong minima on stable capillary-acoustic shapes, this point makes it possible to introduce the concept of generalised solution for this static free boundary problem. In addition, the variational extremal formulation can be used for projective schemes. Authors give successful examples of the realisation of appropriate projective schemes for the case of circular cylindrical tank.

- Theoretical results of the chapters 3 and 4 are generalised onto the case of high-frequency vibration of a tank filled partially by a compressible fluid with the free surface. Corresponding theory of the vibrocapillary equilibria, the spectral theorems on natural sloshing and the variational formulations are given in Chapters 5 and 6.