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a b s t r a c t

Eigenfrequencies and eigenmodes of composite mechanical systems consisting of a thin-walled cylindri-
cal shell and elastic beams [beam–shell–beam (BSB), beam–beam–beam (BBB), etc. systems] are
described by using semi-analytical methods. The methods are less universal comparing with the Finite
Element Method, but they are very accurate and CPU-efficient, and they could have advantages in study-
ing multicomponent structures. A comparative analysis of eigenfrequencies and eigenmodes of the con-
sidered composite systems versus characteristic geometric dimensions is presented.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Coupling long cylindrical rigid and elastic solids are common for
aircraft, spacecraft, shipbuilding and other industry applications.
An example is tall towers (see, Drake, 1999; Dutta et al., 2004;
Livaoglu and Doganguen, 2006; Faltinsen and Timokha, 2009, and
references cited therein). Another interesting example is related
to carbon nanotubes (see Harik et al., 2002; Gibson et al., 2007,
and references cited therein) with either a point mass (Wu et al.,
2006) or another nanotube (Legoas et al., 2004; Gibson et al.,
2007) attached to the nanotube end.

In these and other examples, the whole structure is rather com-
plicated containing numerous rigid and elastic components and,
moreover, may include fluid and gases interacting with these com-
ponents and each other. Bearing in mind a simplification in model-
ing the coupled motions of the complex structure, one must decide
which elementary components can be described by a rigid body, a
beam, or a shell model. Because coupling the neighboring elemen-
tary components matters, a dedicated comparative study of shell–
rigid body, shell–beam, beam–shell–beam, etc. systems as main
macrocomponents of the whole structure is required. Eigenoscilla-
tions of these composite systems vary with the input geometric
and physical parameters. Accurate CPU-efficient numerical meth-
ods and semi-analytical solutions may have a clear advantage for
the corresponding comparative study. Employing these solutions
makes it possible to get fundamental information on the eigen
(or characteristic forced) oscillations and, thereby, estimate appli-
cability of the aforementioned physical models. Getting these

accurate approximate solutions is also useful for verification of
more universal numerical schemes, debugging and testing conver-
gence of the codes based, for instance, on the Finite Element
Method.

A typical composite mechanical system may consist of a central
flexible object and one or two rigid bodies attached to the ends of
this object. The central object should be considered as either beam
or cylindrical shell, but the attached bodies can be associated with
either point masses or rigid bodies. Idealizing to the point masses
or the rigid bodies yields the simplest situation from physical (de-
grees of freedom, physical phenomena, etc.) and mathematical
(governing equations, transmission and boundary conditions,
etc.) points of view. There is the wide literature on this topic.
One could refer to Forsberg (1966) who studied oscillations of
two heavy rigid-ring bodies attached to a circular cylindrical
weightless shell. Further, Bukharinov (1974) accounted for the
shell weight, but suggested additionally that the rigid bodies have
equal masses. A free shell having a single stiffening ring at its end
was considered by Sharma and Johns (1966, 1968, 1970, 1971).
They assumed that the ring is made from the same material as
the shell. Longitudinal and torsional oscillations of a circular cylin-
drical shell with two point masses clamped to its ends were also
investigated by Breslavsky (1973, 1981). Trotsenko and Kladinoga
(1994) studied the coupled eigenoscillations of a prestressed
hyperelastic shell of revolution and a rigid disk attached to one
of the shell ends. The encyclopedia-book by Leissa (1993) refers
also to (i) eigenoscillations of a rigid-ring body attached to the shell
end, and (ii) vibrations of a shell with a rigid mass incorporated
into the shell body as the most popular study cases related to
the idealization. The current state-of-the-art on linear and nonlin-
ear vibrations of a circular cylindrical shells with attached rigid
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bodies can be found in the paper by Pellicano (2007) who proposed
a solution method based on the Sanders–Koiter theory. Pellicano
(2007) has also considered different boundary conditions as well
as types of coupling with rigid bodies. His results were supported
by model tests.

The present paper primary concentrates on the case, when the
attached bodies are long and flexible, namely, they cannot gener-
ally be considered the rigid bodies, but rather beams. This is rele-
vant to macroelements of multi-stage launch vehicles (Kiefling
and Leadbetter, 1971), pipelines, constructive elements of bridges
and offshore structures (Rotter, 1998, and references cited therein)
as well as to embedding nanotubes (Legoas et al., 2004; Gibson
et al., 2007). The coupled oscillations of these composite mechan-
ical system can then be modeled by considering either the beam–
shell–beam (BSB, or SB, shell–beam) or, under certain circum-
stances, the beam–beam–beam (BBB, or BB, beam–beam) mechan-
ical system. An illustrative comparative study of these systems in
terms of the eigenfrequencies and modes versus several nondi-
mensional input parameters is a particular goal of the present pa-
per. Forced oscillations can also be examined by using similar
approximate methods, but, in the authors’ opinion, those dedicated
studies should be done within the framework of another
presentation.

Accurate and CPU-efficient analytically oriented methods pro-
viding this study is another important goal. These methods can be
considered an alternative to the Finite Element Method (FEM),
e.g. packages ANSIS and NASTRAN. The accuracy is confirmed by
numerous computational experiments; the corresponding fast
convergence is exemplified in Section 3.

Historically, this double-goal problem was stated by engineers
who deal with a certain class of composite constructions consisting
of a large number of joint BBB/BSB-type components. Originally,
using standard criteria, they have realised that the components
can be modeled by the BBB-system. The corresponding software
was developed, and it was showed that it is numerical efficient
and, generally, applicable for computations of the whole composite
construction. However, as it was told us, there were found situa-
tions for which the numerical results are not consistent with
experimental data. Depending on the length, position of the central
element, several components behaved like a BSB-system. The dou-
ble task was stated. First, we had to give a priori estimate (by an
exhaustive search through all the components) whether or not
they can be described by the BBB-model. Second, after finding a
component which requires the shell model for the central element,
we had to advice the corrector factors in the input bending stiff-
ness for the used software providing more adequate numerical
output. Obviously, because thousands combinations should be
tested, our method must be very CPU-efficient. In addition, it
should be quite accurate to get not only qualitative conclusion
on the used model, but also quantify the difference and compute
the aforementioned corrector factors.

The literature survey showed us that Shveiko et al. (1968) is,
most probably, the only paper which deals with the eigenproblem
for the BSB-system providing, in fact, an analytical solution of
this problem. Shveiko et al. (1968) approximated the eigensolution
of the BSB-system by employing an exact solution of the
Donnell–Mushtari–Vlasov equation. Discussing advantages and
disadvantages of this analytical solution method, Trotsenko
(2002) remarked that even though Shveiko et al. (1968) give an
analytical, very accurate solution, its numerical realization is
CPU-demanding, even if we compare it with the FEM. Thus, it can-
not be used for solving the double task. Trotsenko (2002) assumed
that an alternative could be a variational method with appropriate
functional basis. The present paper constructs this functional basis,
and employs it in a Ritz scheme. Some interesting properties of the
BSB (compared with BBB) system (related to the case by Shveiko

et al. (1968)) are emphasized. The focus is on dependencies of
the eigenfrequencies and modes on the nondimensional shell thick-
ness, length and position relative to the two attached beams.
Remembering for the qualitative fact that the eigenfrequencies of
the BSB-system are lower of those for the BBB-system, we focus
on quantification of the eigenfrequencies versus as we mentioned,
the shell thickness, length and its position between two, generally,
non-equal beams. In addition, we show a sufficient difference be-
tween the eigenmodes. The difference may also matter for the
cases when the eigenfrequencies of these two systems remain
close to each other.

In Section 2, the governing equations and the boundary [trans-
mission] conditions are formulated. These are taken from the paper
by Shveiko et al. (1968) and, alternatively, they are derived by
using the variational principle stating the equivalence of variations
of the potential energy due to small deviations of the system to the
corresponding virtual work done by the inertia forces. Details of
this derivation are presented in Appendix A. Furthermore, we con-
sider the problem on eigenoscillations of the BSB-system that ap-
pears as a spectral boundary problem. In Section 3, we construct
a Ritz scheme for this spectral boundary problem utilizing varia-
tional statement from Appendix A. The method for the spectral
problem on eigenoscillations of the BBB-system is also considered.

The comparative studies of BSB- and BBB-systems need to
evaluate eigenfrequencies and eigenmodes versus numerous nondi-
mensional input parameters. For brevity, the studies are related to
the case by Shveiko et al. (1968) who considered a set of restrictions
to the input nondimensional parameters; the relations are associ-
ated with a military spacecraft application. The three remaining
independent input parameters can be related to the length of the
central object, position of this object and the shell thickness. In
Section 4, we analyze dependencies of eigenfrequencies and
eigenmodes on these three parameters. In addition, the paper pre-
sents a comparative study of two-component systems consisting
of shell–beam (SB) and shell–rigid body (SrB).

2. Statement

2.1. Introductory remarks and definitions

We consider small-amplitude oscillations of the mechanical
system consisting of a circular cylindrical shell (in its unperturbed
state of radius R, length l and thickness h) and two beams attached
to the shell ends as shown in Fig. 1. This BSB-system is assumed to
be symmetric relative to two mutually perpendicular planes,

Fig. 1. Sketch of the BSB-system. Definition of the angle u, as well as of the
displacement V is in the negative direction, based on the choice of the orientation of
the coordinate system Oxyz. This negative direction was used by Shveiko et al.
(1968) who published the pioneering paper on the BSB-system.
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whose intersection coincides with longitudinal axis of the circular
cylindrical shell and the beams. We introduce the Cartesian coordi-
nate system Oxyz with the unit vectors i, j and k so that the coor-
dinate planes Oxz and Oyz are superposed with the perpendicular
symmetry planes and the origin O lies on a beam end. Fig. 1 intro-
duces z1, z2 and z3, where z3 is the total length of the BSB-system, z1

is length of the first beam (touching the Oxy-plane), z2 = l + z1 and
z3 � z2 = z3 � z1 � l is length of the second beam.

The mean shell surface (mid-surface) deviates relative to its sta-
tic cylindrical shape R. The mid-surface can be described in curvi-
linear (cylindrical) coordinate system Ozru, where the polar angle
u is positive in the counterclockwise direction when watching
along the positive direction of the Oz-axis. In the Ozru-coordinate
system, the small structural deviations are presented by the vector

Uðz;u; tÞ ¼ uðz;u; tÞe1 þ vðz;u; tÞe2 þwðz;u; tÞe3;

z1 < z < z2; 0 < u 6 2p: ð1Þ

Here, e1, e2 and e3 are the unit vectors of the u � v � w natural coor-
dinate system introduced on R as shown in Fig. 1. Vectors e1 and e2

are tangential to the coordinate curves of u and z, respectively;
e3 = [e1 � e2]. Functions u, v and w are unknown and must be found
from the linearized shell equations. The unknowns u, v and w
depend on z 2 [z1,z2] and u 2 [0,2p]. Obviously, u, v and w are
2p-periodic of the angular coordinate u.

The small-amplitude beam vibrations are associated with in-
stant deformations of its longitudinal axis which coincides with
the Oz-axis in the unperturbed state. Without loss of generality,
we consider only deformations in the Oxz-plane. The instant defor-
mations of the two beams can then be modeled by functions n1(z, t)
and n2(z, t) defined on intervals [0,z1] and [z2,z3], respectively.
These functions determine two planar curves in the Oxz-plane;
these imply deviations of their longitudinal axes.

In summary, the small-amplitude coupled vibrations of the
BSB-system occurring in the Oxz-plane are governed by the five
unknowns

n1ðz; tÞ; 0 < z < z1;

uðz;u; tÞ; vðz;u; tÞ;wðz;u; tÞ; z1 < z < z2; 0 < u 6 2p;
n2ðz; tÞ; z2 < z < z3:

8><
>:

2.2. Boundary value problem

2.2.1. Geometric boundary- and transmission-conditions
At z = z1 and z = z2, the shell is rigidly fixed with the beam ends.

Because these ends are flat and perpendicular to the Oz-axis, the
contact points constitute two circles of radius R in the static state.
The contact circles should deviate together with the beams and the
shell. These deviations have to satisfy the relation

Uðz;uÞ ¼ U0 þ ½h0 � r0� at z ¼ z1; z2; ð2Þ

where U0 and h0 are vectors of small translatory and angular dis-
placements of the beam ends at z = z1 and z = z2, respectively, and
r0 is the corresponding radius-vectors of the shell ends with respect
to the points (0,0,zk), k = 1,2. In the Cartesian coordinate system,
the vectors U0, h0 and r0 are as follows:

U0 ¼ fnkðzk; tÞ;0; 0g; h0 ¼ 0;
dnkðzk; tÞ

dz
;0

� �
;

r0 ¼ fR cos u;�R sin u; 0g: ð3Þ

This implies that the right-hand side of (2) is a function of Dirich-
let’s and Neumann’s traces of n1 and n2 on z = z1 and z = z2,
respectively.

In turn, the left-hand side of Eq. (2) is expressed in terms of
functions u, v and w. To find these expressions, we can use the fol-

lowing dependencies between the local basis e1, e2 and e3 (at the
shell ends) and the Cartesian unit vectors i, j and k

i ¼ � sin ue2 þ cos ue3; j ¼ � cos ue2 � sinue3; k ¼ e1: ð4Þ

Substituting Eq. (4) into Eq. (1) and using the obtained result (to-
gether with (3)) in Eq. (2) yields the three geometric transmission
conditions between u, v, w and nk

uðzk;u; tÞ ¼ �
onkðzk; tÞ

oz
R cosu; vðzk;u; tÞ ¼ �nkðzk; tÞ sin u;

wðzk;u; tÞ ¼ nkðzk; tÞ cos u at z ¼ zk; k ¼ 1;2:

ð5Þ

Furthermore, local deformations at the shell ends have to keep
invariant the right contact angle between the shell and the beams
flat ends. Earlier, we assumed (for brevity) that the beams [their
longitudinal axes] oscillate in the Oxz-plane. Under this assumption,
the mentioned invariance means that the beam ends perform angu-
lar motions around the unit vector e2. As a result, the additional
geometrical transmission condition are

owðzk;u; tÞ
oz

¼ onkðzk; tÞ
oz

cosu; k ¼ 1;2: ð6Þ

There are also the geometric boundary conditions that are formu-
lated at the beam ends z = 0 and z = z3. Usually, these are either
the clamped-end condition

nj ¼
onj

oz
¼ 0 at z ¼ 0 or z ¼ z3; j ¼ 1;2; ð7Þ

or the free-end condition

o2nj

oz2 ¼
o3nj

oz3 ¼ 0 at z ¼ 0 or z ¼ z3; j ¼ 1;2: ð8Þ

2.2.2. Governing equations and dynamic transmission conditions
Let us denote the beam mass per its length (linear mass) and the

flexural rigidities of the beams as mk(z) and EkIk(z), respectively, so
that k = 1 corresponds to the first beam with z 2 [0,z1] and k = 2
implies the second beam with z 2 [z2,z3]. The governing equations
for shell and two beams as well as the corresponding dynamic
transmission conditions at z = zk, k = 1,2, which reflect balance of
forces and moments, can be taken from the paper by Shveiko
et al. (1968), or, alternatively, derived by using a variational prin-
ciple (see, Appendix A). The governing equations are as follows:

L11ðuÞ þ L12ðvÞ þ L13ðwÞ ¼
qð1� m2Þ

E
o2u
ot2 ;

L21ðuÞ þ L22ðvÞ þ L23ðwÞ ¼
qð1� m2Þ

E
o2v
ot2 ;

L31ðuÞ þ L32ðvÞ þ L33ðwÞ ¼ �
qð1� m2Þ

E
o2w
ot2 ;

o2

oz2 EkIk
o2nk

oz2

 !
þmk

o2nk

ot2 ¼ 0; k ¼ 1;2;

ð9Þ

where

L11 ¼
o2

oz2 þ
m1

R2

o2

ou2 ; L12 ¼ L21 ¼
m2

R
o2

ozou
;

L13 ¼ L31 ¼
m
R

o

oz
;

L22 ¼
1
R2

o2

ou2 þ m1
o2

oz2 ; L23 ¼ L32 ¼
1
R2

o

ou
;

L33 ¼
1
R2 ðc

2DDþ 1Þ;

D ¼ R2 o2

oz2 þ
o2

ou2 ; m1 ¼
1� m

2
; m2 ¼

1þ m
2

; c2 ¼ h2

12R2

ð10Þ
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and Ek is Young’s modulus.
According to Shveiko et al. (1968), the dynamic transmission

and shell-ends boundary conditions take the form

Z
C

S sinu� Q �1 cos u
� ���

z¼zk
ds� Q ðkÞ

���
z¼zk

¼ 0; ð11aÞZ
C

T1R cos uþM1 cos uð Þjz¼zk
dsþMðkÞ

���
z¼zk

¼ 0; k ¼ 1;2; ð11bÞ

where T1 and S are the stretch (along the meridians) and the shear
force (referred to the unit length of the cross-section of the mean
shell surface R), respectively; Q �1 is the generalized cross-force ap-
plied to the shell contour, M1 is the linear bending moment in the
shell meridional plane, M(k) and Q(k) are the bending moment and
the shear force for the two beams. The latter values are represented
by the formulas

S¼ Eh
2ð1þ mÞ

ov
oz
þ1

R
ou
ou

� �
; T1 ¼

Eh
1� m2

ou
oz
þ m

R
ov
ou
þw

� �	 

;

M1 ¼�D
o2w
oz2 þ

m
R2

o2w
ou2

 !
;

QH

1 ¼�c2 Eh
1� m2 R2 o3w

oz3 þ ð2� mÞ o3w
ozou2

" #
;

MðkÞ ¼ EkIk
o2nk

oz2 ; Q ðkÞ ¼ o

oz
EkIk

o2nk

oz2

 !
; k¼ 1;2:

ð12Þ

Eqs. (11) imply the fact that the resulting force (projection on the
Ox-axis) and the moment (relative to the Oy-axis) are zero at the
contact contours.

In summary, motions of the BSB-system are described by the
governing equations (9) with geometric (5) and (6) and dynamic
(11) transmission conditions and the clamped-end (7) or the
free-end (8) condition.

2.3. Eigenfrequencies and eigenmodes

Henceforth, linear problem (9), (5), (6), (11) and ((7) or (8)) is
nondimensionalized and considered in the cylindrical coordinate
system. The main focus is the eigenoscillations, i.e. we consider
the exp(ixt)-proportional solution

u ¼ eixtunðzÞ cos nu; v ¼ eixtvnðzÞ sin nu; w ¼ eixtwnðzÞ cos nu;

nk ¼ eixtgkðzÞ; n ¼ 1;2; . . . ; k ¼ 1;2; i2 ¼ �1;

ð13Þ

forces and moments associated with shell deformations are defined
by

T1 ¼ eixtT1ðnÞ cos nu; T2 ¼ eixtT2ðnÞ cos nu; S ¼ eixtSðnÞ sin nu;

QH

1 ¼ eixtQH

1ðnÞ cos nu; M1 ¼ eixtM1ðnÞ cos nu:

ð14Þ

The normalization adopts the characteristic dimension R and timeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ðð1� m2ÞqR2Þ

q
which lead to the following nondimensional

parameters:

c1 ¼
z1

R
; c2 ¼

z3 � z2

R
; c¼ l

R
; ð15aÞ

a1 ¼
z
R

; a2 ¼
z3 � z

R
; a¼ z� z1

R
; ð15bÞ

�un; �vn; �wnf g ¼ R�1 un;vn;wnf g; ð15cÞ

T1ðnÞ;QH

1ðnÞ;SðnÞ
n o

¼ ð1� m2Þ
Eh

T1ðnÞ;Q
H

1ðnÞ;SðnÞ
n o

; ð15dÞ

M1ðnÞ ¼
ð1� m2Þ

EhR
M1ðnÞ; Q ðkÞ ¼ 1

pEhR
Q ðkÞ; MðkÞ ¼ 1

pEhR2 MðkÞ; ð15eÞ

�x2 ¼ ð1� m2ÞqR2

E
x2; fk ¼

EkIk

pEhR3 ; �mk ¼
mk

ð1� m2ÞpqRh
: ð15fÞ

Here, Eq. (15a) defines the nondimensional lengths of the beams
and the shell, Eq. (15b) introduces the local ‘nondimensional’ longi-
tudinal axes for the beams and the shell, Eq. (15c) presents nondi-
mensional deviations of the shell associated with nth eigenmode,

T1ðnÞ; SðnÞ;QH

1ðnÞ;M1ðnÞ

n o
are nondimensional stretch and shear forces,

nondimensional generalized cross-force and linear bending mo-
ment for the shell (associated with nth eigenmode), respectively,
and Q ðkÞ and MðkÞ are the nondimensional bending moment and
shear force for kth beam, respectively. Eq. (15f) introduces the non-
dimensional eigenfrequency �x, the nondimensional bending stiff-
ness for kth beam, fk, and the nondimensional structural mass, �mk

for the two beams k = 1,2. Whereas the normalization of the
shell-related parameters is associated with a standard procedure,
we should emphasis the nondimensional parameters of the beams,
Q ðkÞ; MðkÞ, fk and �mk; k ¼ 1;2 whose normalization is obtained by
scaling them by those for the shell.

Omitting overbars in the nondimensional parameters, we get
the n-parametric family of the ODE coupling un(a), vn(a), wn(a)
and gk(ak) (eigenmodes) and eigenfrequency x

d2

dak
fk

d2gk

da2
k

 !
�x2mkgk ¼ 0; ð16Þ

LðnÞ11 ðunÞ þ LðnÞ12 ðvnÞ þ LðnÞ13 ðwnÞ þx2un ¼ 0;

LðnÞ21 ðunÞ þ LðnÞ22 ðvnÞ þ LðnÞ23 ðwnÞ þx2vn ¼ 0;

LðnÞ31 ðunÞ þ LðnÞ32 ðvnÞ þ LðnÞ33 ðwnÞ �x2wn ¼ 0; n ¼ 1;2; . . . ; k ¼ 1;2:

ð17Þ

Here, LðnÞij , i, j = 1, . . ., 3 are differential operators obtained from oper-
ators Lij by separating the angular variable u. The boundary condi-
tions for the free- or clamped beam ends (in nondimensional
formulation, at a1 = 0 and a2 = 0) should also be added.

Substituting (13) into transmission conditions (11) gives differ-
ent results for n = 1 and n – 1. When n = 1, the transmission condi-
tions take the form

u1ðvkÞ ¼ ð�1Þk dgkðckÞ
dak

;
dw1ðvkÞ

da
¼ ð�1Þkþ1 dgkðckÞ

dak
;

v1ðvkÞ ¼ �gkðckÞ; w1ðvkÞ ¼ gkðckÞ;
ð18Þ

c2 d3w1

da3 � ð2� mÞdw1

da

" #
þ m1

dv1

da
� u1

� �( )
a¼vk

þ ð�1Þkð1� m2Þ d
dak

fk
d2gk

da2
k

 !
ak¼ck

¼ 0; ð19aÞ

c2 mw1 �
d2w1

da2

 !
þ du1

da
þ mðv1 þw1Þ

" #
a¼vk

þ ð1� m2Þ fk
d2gk

da2
k

 !
ak¼ck

¼ 0; k ¼ 1;2; ð19bÞ

where v1 = 0 and v2 = c. In contrast, when n > 1, the transmission
conditions transform to the form

unðvkÞ ¼ vnðvkÞ ¼ wnðvkÞ ¼
dwnðvkÞ

da
¼ 0; k ¼ 1;2: ð20Þ

The difference between conditions (19) and (20) means that the
eigenmodes of the BSB-system fall into two types. The first type
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(beam-type motions, n = 1 Forsberg, 1966) is associated with a non-
trivial solution of Eqs. (16)–(19) and ((7) or (8)). The first-type
eigenmodes represent the coupled shell–beams oscillations impos-
ing that all the functions u1, v1, w1 and g1, g2 are not zero. However,
in view of representation (14), projections of the resulting force on
axes Oy and Oz, the bending moment around the Ox-axis and the
torsion moment, which are transferred from shell to beams, are
then equal to zero. This means that these eigenmodes imply trans-
verse motions of the beams in the Oxz-plane. In contrast, the sec-
ond-type solution (n – 1) means the uncoupling between un, vn,
wn and gk so that the shell performs oscillations in the Oxz-plane,
but the two beams remain motionless.

3. Approximate eigenfrequencies and eigenmodes

3.1. The Ritz scheme for the BSB-system

When the shell thickness and other characteristics are constant
values, Shveiko et al. (1968) found an analytical solution of Eq.
(17) within a fixed value of x. Employing this solution as well as
the solution of the beam equation (16) (with the same fixed fre-
quency x), they used conditions (18) and (19) (together with the
clamped-end condition (7)) to derive a linear homogeneous alge-
braic system of the twelfth order with respect to a full set of the un-
known integration variables. The eigenmode corresponds to a non-
trivial solution of the linear algebraic system. Coefficients of the cor-
responding matrix are a function of x. To find the eigenfrequencies,
Shveiko et al. (1968) used the zero-determinant condition consid-
ered with respect to x. The roots may be computed by diverse iter-
ative methods. Trotsenko (2002) reexamined the method by Shveiko
et al. (1968). He reported a series of misprints and showed that the
analytical solution of (17) by Shveiko et al. (1968) can reasonably
change its properties with varying x and geometric and physic
parameters. As a consequence, numerical realization of the method
may become difficult and in many cases unstable. The variational
scheme from this section can be considered an alternative.

Our analysis uses expressions from Appendices A and B. After
separation of t and u (due to (13)), the original spectral problem
can be considered the necessary extrema condition of the
functional

I ¼ 1
2

Z c

0

dun

da

� �2

þ ðwn þ nvnÞ2 þ 2m
dun

da
ðwn þ nvnÞ
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k dak

" #
:
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When n = 1, this functional should be minimized with respect to
functions which satisfy equations and boundary conditions (18)
and the clamped- or free-end boundary conditions, namely, (7) or
(8). The dynamic transmission condition (19) naturally follows from
the minimization. For the case n > 1, the geometric transmission
condition restricts functional (21) to relations gk � 0, k = 1,2. The
statement needs also conditions (20).

For brevity of description, we assume that the two beams are
rigidly fixed (clamped) at the ends, i.e. gj = 0 at a1 = a2 = 0. Because

d4gk

da4
k

� b4
kgk ¼ 0; b4

k ¼
mkx2

fk
; k ¼ 1;2; ð22Þ

the clamped-end conditions deduce the following analytical
solution:

g1ða1Þ ¼ C1Uðb1a1Þ þ C2Vðb1a1Þ;
g2ða2Þ ¼ D1Uðb2a2Þ þ D2Vðb2a2Þ: ð23Þ

Here, Ci and Di, i = 1,2 are real numbers, and U(biz) and V(biz) are the
so-called Krylov functions (Krylov, 1936)

UðbzÞ ¼ 1
2
ðcosh bz� cos bzÞ; VðbzÞ ¼ 1

2
ðsinh bz� sin bzÞ:

The unknowns un(a), vn(a) and wn(a) are imposed to satisfy the
transmission conditions. This can be done by assuming that

unðaÞ ¼
XN

j¼1

ajUjðaÞ þ d1n
dg2ðc2Þ

da2
f2ðaÞ �

dg1ðc1Þ
da1

f1ðaÞ
� �

;

vnðaÞ ¼
XN

j¼1

bjVjðaÞ � d1nðg1ðc1Þf1ðaÞ þ g2ðc2Þf2ðaÞÞ;

wnðaÞ ¼
XN

j¼1

cjWjðaÞ þ d1n

�
g1ðc1Þg1ðaÞ þ g2ðc2Þg2ðaÞ:

þ dg1ðc1Þ
da1

h1ðaÞ �
dg2ðc2Þ

da2
h2ðaÞ

�
;

d1n ¼
1; for n ¼ 1;
0; for n > 1;

�

ð24Þ

where aj, bj, cj are arbitrary real numbers,

f1ðaÞ ¼ 1� a
c

; f 2ðaÞ ¼
a
c

; g1ðaÞ ¼ 1� 3
c2 a2 þ 2

c3 a3;

g2ðaÞ ¼ 1� g1ðaÞ; h1ðaÞ ¼ a� 2
c
a2 þ 1

c2 a3; h2ðaÞ ¼ �
a2

c
þ a3

c2 ;

and the coordinate functions Uj(a), Vj(a) and Wj(a) have to satisfy
condition (20). When n = 1, the terms in the front of the Kronecker
delta provides the fulfillment of the transmission conditions (19) for
the beam-type eigenoscillations.

Representations (23) and (24) yield the following vector formed
by the unknown constants:

X ¼ fa1; a2; . . . ; aN; b1; b2; . . . ; bN; c1; c2; . . . ; cN; C1;C2;D1;D2g:

One should note that representation (24) includes itself the eigen-
modes which correspond to the eigenfrequencies x�1i for which
g1(c1) = dg1(c1)/da1 = 0, and the eigenfrequencies xH

2i providing
g2(c2) = dg2(c2)/da2 = 0. As long as a frequency x coincides with
x�1i, the first beam satisfies the clamped-end condition at a1 = 0.
The shell and the second beam remain motionless. Analogous situ-
ation occurs for xH

2i, i.e. the first beam and the shell are unmovable,
but the second beam performs eigenoscillations. Furthermore, we
exclude these cases from consideration and focus exclusively on
the coupled eigenoscillations of the BSB-system. A way to do this
consists of dividing the expressions for g1(c1), dg1 (c1)/da1 and
g2(c2), dg2(c2)/da2 by the coefficients

K1 ¼
Xp

i¼1

x�x�1i

� �
; K2 ¼

Xp

i¼1

x�x�2i

� �
;

where x�1i and x�2i are found from the corresponding problems on
the beam vibrations and integer p is chosen to overlap the tested
range of x.

Our choice of a set of linearly independent and complete func-
tions on interval [0,c] is Legendre’s polynomials. This means that
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UjðaÞ ¼ VjðaÞ ¼ aða� cÞPj
2
c
a� 1

� �
;

WjðaÞ ¼ a2ða� cÞ2Pj
2
c
a� 1

� �
; j ¼ 1; . . . ;N;

ð25Þ

where Pj(z) are the Legendre polynomials, whose first two deriva-
tives can be found by using the recurrent formulas

Pjþ2ðzÞ ¼
1

jþ 1
½ð2jþ 1ÞzPjþ1ðzÞ � jPjðzÞ�;

P0jþ2ðzÞ ¼ zP0jþ1ðzÞ þ ðjþ 1ÞPjþ1ðzÞ;
P00jþ2ðzÞ ¼ zP00jþ1ðzÞ þ ðjþ 2ÞP0jþ1ðzÞ;

P1ðzÞ ¼ 1; P2ðzÞ ¼ z; P3ðzÞ ¼
1
2
ð3z2 � 1Þ:

In contrast to standard Ritz’s scheme, representation (24) of u1(a),
v1(a) and w1(a) is nonlinearly dependent on the unknown parame-
ters C1, C2 and D1, D2. This means that the homogeneous system
with respect to X is generally speaking nonlinear. A simplification
is possible based on a preliminary calculus of variations in func-
tional (21) with accounting for transformations and special features
of g1(a1) and g2(a2) that consist of particular solutions of the beam
equation.

Let us introduce the following differential operators:

W11ðp;qÞ ¼
dp
da

dq
da
þ m1n2pq; W12ðp;qÞ ¼ mnp

dq
da
� m1n

dp
da

q;
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da
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dq
da
;

W33ðp;qÞ ¼ pqþ c2 d2p
da2 � mn2p

 !
d2q
da2

"

þ n4p� mn2 d2p
da2

 !
qþ2ð1� mÞn2 dp

da
dq
da

#
;

ð26Þ

where p(a) and q(a) are arbitrary functions. This presents variations
of functional (21) as

dI ¼
Z c
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The components of X are determined from the necessary extrema
condition of the functional. This transforms the original problem
to the generalized eigenvalue problem

ðA�x2BÞXT ¼ 0; ð28Þ

where A and B are symmetric matrices of the order 3N + 4 for n = 1
and 3N for n > 1. Some elements of A and B depend on the frequency
x because it is presented in terms of Krylov’s functions. Expressions
for elements of matrices A and B are presented in Appendix B.

When n > 1, the matrices A and B can be constructed by involv-
ing elements of the matrices of the case n = 1 by crossing out the
last four rows and columns. Hence, approximate solutions on the
eigenoscillations of the BSB-system reduce to calculation of a series
of integrals and identification of the eigenvalues from the matrix
spectral problem (28).

Trotsenko (2006) considered the coupled free oscillations of a
cylindrical shell with an attached rigid body at its end. Another
end of the shell was rigidly clamped. Employing the methods

above, one can compare these results with those when the at-
tached body is a beam. For the clamped end of the shell, the follow-
ing boundary conditions should be fulfilled:

u1ðv1Þ ¼ v1ðv1Þ ¼ w1ðv1Þ ¼
dw1ðaÞ

da

����
a¼v1

¼ 0: ð29Þ

The transmission condition at a2 = 0 is

d2g2ða2Þ
da2

2

¼ d3g2ða2Þ
da3

2

�����
a2¼0

¼ 0: ð30Þ

In summary, we have

g2ða2Þ ¼ D1Sðb2a2Þ þ D2Tðb2a2Þ:

One can see that to get the final computational formulas, it is en-
ough to exclude the rows and columns 3N + 1, 3N + 2 in matrices
A, B in Eq. (28). The formulas for coefficients C2

i;j, (i, j = 1,2) need
the following formal substitution {S,T,U,V} ? {U,V,S,T}.

The modified method was tested to approximate the eigenfre-
quencies and the eigenmodes for the case of the clamped beam
ends. The nondimensional parameters (45) are adopted. Length
and thickness of the cylindrical shell varied. Elements of matrices
A and B are computed by using the Gauss quadratures.

Tables 1 and 2 illustrate typical convergence to the five lower
eigenfrequencies versus N in representation (24) with c = 2,
c1 = 8, f = 2 and c = 6, c1 = 4, f = 2. The results show a fast conver-
gence and good accuracy (five significant figures are stabilized)
for an intermediate shell length. Longer shells need larger N in rep-
resentation (24) to get the same accuracy. All the stabilized signif-
icant figures were controlled by comparing with the benchmark
analytical solution by Shveiko et al. (1968). The comparison estab-
lished that these stabilized significant figures coincide with those
by Shveiko et al. (1968) and, thereby, we confirmed quite good
accuracy of the method. The eigenfunctions by the method are also
very close to the analytical solution by Shveiko et al. (1968) provid-
ing 3–5 significant figures in the uniform metrics in the case when
5–6 significant figures of the eigenvalues are stabilized.

Computations remain robust and can provide larger number of
significant figures with larger N that does not exceed the polyno-
mial degree N = 40. For N P 50, the matrices may, however, be-
come ill-conditioned and special modifications of the method,
e.g. Gramm–Schmidt orthogonalization, is needed to get it stable.

3.2. The BBB-system

We assume that cross-sections of the shell remain flat and per-
pendicular to its neutral axis and the normal stresses (parallel of
this axis) are negligible. In this case, the shell can theoretically
be replaced by an equivalent beam, whose linear mass m = 2pRhq
and the bending rigidity EI = EpR3h are constant values. As a result,
the problem reduces to identifying the eigenoscillations of a heter-
ogeneous elastic beam with the piecewise bending rigidity EiIi and
linear mass mi. A solution method for this problem may consist of
shooting numerical procedure with the initial Cauchy conditions
(see Krylov, 1936). This procedure makes it possible to determine

Table 1
Numerical values of the five lowest eigenfrequencies versus the number N of
coordinate functions for c = 2, c1 = 8 and f = 2.

N x1 x2 x3 x4 x5

2 0.03813 0.09778 0.19468 0.29943 0.44334
4 0.03810 0.09772 0.19462 0.29933 0.44279
6 0.03809 0.09770 0.19460 0.29931 0.44275
8 0.03808 0.09770 0.19460 0.29931 0.44274

10 0.03808 0.09770 0.19459 0.29931 0.44274
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eigenfrequencies and eigenmodes by using the so-called frequency
determinant, whose order is independent of the mode number. The
method is CPU-efficient, because it reduces to multiplying matrices
of the fourth order and computations of the roots of a transcenden-
tal equation.

Let us divide a beam into k subsections with the lengths li,
i = 1, . . .,k. The bending rigidity and linear mass are constant values
on each of these subsections. We introduce the corresponding
coordinate systems for these subsections. This gives the following
differential equations with constant coefficients:

d4giðziÞ
dz4

i

� b4
i giðziÞ ¼ 0; b4

i ¼
mi

Di
x2; Di ¼ EiIi;

0 6 zi 6 li; i ¼ 1; . . . ; k; ð31Þ

where x is eigenfrequency, gi(zi) is eigenmode for ith subsection.
Eq. (31) needs both transmission and boundary conditions. The

transmission conditions between each of ith and i + 1th subsec-
tions are

giðliÞ ¼ giþ1ð0Þ; g0iðliÞ ¼ g0iþ1ð0Þ;
Dig00i ðliÞ ¼ Diþ1g00iþ1ð0Þ; Dig000i ðliÞ ¼ Diþ1g000iþ1ð0Þ: ð32Þ

These reflect the continuity of the flexure, the angular displace-
ment, the bending moments and the cross-cutting forces. The gen-
eral solution for each subsection can be presented as

giðziÞ ¼ gið0ÞSðbiziÞ þ
1
bi

g0ið0ÞTðbiziÞ þ
1
b2

i

g00i ð0ÞUðbiziÞ

þ 1
b3

i

g000i ð0ÞVðbiziÞ: ð33Þ

Let us introduce the four-dimensional vector

uiðziÞ ¼ u1i; u2i; u3i; u4if gT ;

whose components are related to functions gi(zi) and their deriva-
tive by

u1i ¼ giðziÞ; u2i ¼ g0iðziÞ; u3i ¼ Dig00i ðziÞ; u4i ¼ Dig000i ðziÞ: ð34Þ

The transmission conditions (32) for two consequent subsections
are then as

uiðliÞ ¼ uiþ1ð0Þ; ð35Þ

and the vector ui(zi) can be expressed via the initial values ui(0) and
the Krylov functions

uiðziÞ ¼ AiðziÞuið0Þ: ð36Þ

Here, Ai(zi) is the matrix

AiðziÞ ¼

S 1
bi

T 1
b2

i Di
U 1

b3
i Di

V

biV S 1
biDi

T 1
b2

i Di
U

b2
i DiU biDiV S 1

bi
T

b3
i DiT b2

i DiU biV S

2
6666664

3
7777775
;

where arguments in the Krylov functions are bizi.

Based on Eqs. (36) and (35), we get the following formula:

uiþ1ðziþ1Þ ¼ Aiþ1ðziþ1ÞAiðliÞuið0Þ: ð37Þ

Using relations (35)–(37), solutions on each subsection can be ex-
pressed through the initial value u1(0) on the first section

uiðziÞ ¼ AiðziÞ
Y1

j¼i�1

AjðljÞu1ð0Þ: ð38Þ

In view of expression (38), we get the formula for displacements
and forces on the right end of the beam depending on displace-
ments and forces on the left end

ukðlkÞ ¼ Puið0Þ; ð39Þ

where P ¼
Q1

i¼kAiðliÞ. The solution should be subject to the boundary
conditions corresponding to either clamped or free ends of the first
and last subsections. In the case of the free ends, these are

u31ð0Þ ¼ u41ð0Þ ¼ u3kðlkÞ ¼ u4kðlkÞ ¼ 0: ð40Þ

Using Eq. (39), we obtain the following equation to find the
eigenfrequencies:

p31p42 � p32p41 ¼ 0 ð41Þ

in which pij are elements of the matrix P. For the clamped-ends, the
frequency equation (41) transforms to

p13p24 � p14p23 ¼ 0: ð42Þ

Employing the normalization condition u11(0) = 1, the initial condi-
tions can be presented as

u1ð0Þ ¼ 1;u21ð0Þ; 0;0f gT
; u21ð0Þ ¼ �

p31

p32
: ð43Þ

In view of the formulas (38) and (43), the eigenmodes for each sub-
section take the form

giðziÞ ¼ bðiÞ11ðziÞ � bðiÞ12ðziÞ
p31

p32
; ð0 6 zi 6 liÞ; ð44Þ

where bðiÞpq are elements of the matrix BðziÞ ¼ AiðziÞ
Q1

j¼i�1AjðljÞ.

4. Numerical results and comparative analysis

4.1. BSB versus BBB systems

Henceforth, eigenfrequencies and eigenmodes of BSB and BBB
systems are studied with the clamped-end conditions for the two
attached beams. The nondimensional eigenfrequencies for the
BSB-system are denoted xi, but x�i are the nondimensional eigen-
frequencies of the BBB-system. These three-element systems intro-
duce a sufficient number of independent nondimensional input
parameters, so that a comparative parametric analysis (by the full
set of these parameters) becomes generally impossible without
assuming some realistic relations between them that reduce the
number of the independent parameters. Appropriate relations
can be taken from the paper by Shveiko et al. (1968) who consid-
ered a spacecraft object for which the nondimensional input
parameters are linked by

m1

f1
¼ m2

f2
¼ m

f
¼ 2:2; f ¼ 1

75h
; m ¼ 0:3;

z3

R
¼ 20: ð45Þ

When adopting (45), the eigenoscillations become a function of the
nondimensional shell thickness (proportional to 1/f), the nondimen-
sional shell length (c) and the nondimensional shell position (c1).

Fig. 2 demonstrates the three lowest eigenfrequencies of the
three-element systems (BBB and the beam-type eigenoscillations
of the BSB-system) versus the aforementioned three independent

Table 2
Numerical values of the five eigenfrequencies versus the number N of coordinate
functions for c = 6, c1 = 4 and f = 2.

N x1 x2 x3 x4 x5

2 0.03885 0.10514 0.18342 0.29362 0.38854
4 0.03873 0.10353 0.18275 0.26800 0.38800
6 0.03870 0.10343 0.18271 0.26745 0.38704
8 0.03868 0.10341 0.18269 0.26727 0.38690

10 0.03867 0.10340 0.18268 0.26720 0.38686
12 0.03866 0.10339 0.18267 0.26716 0.38684
14 0.03866 0.10339 0.18267 0.26716 0.38684
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input parameters f, c and c1. The focus is on quantification of the
maximum difference between the eigenfrequencies.

When comparing BSB- and BBB-eigenfrequencies versus f (first
frame in Fig. 2), the remaining two nondimensional parameters are
fixed, c = 2 and c1 = 4 in this example. One can see that decreasing
the shell thickness increases the drop of xi relative to x�i . For f = 2,
the difference is about 3%, but increasing f to 14 causes the 10%-
relative difference, namely, the larger value of f causes the larger
drop.

Dependence of the lower eigenfrequencies on the nondimen-
sional shell [central beam] length is presented in the second frame
of Fig. 2. The remaining nondimensional parameters were chosen
to provide the same total nondimensional length = 20 and equal
lengths of the attached beams (c1 = c2); the shell thickness is re-
stricted to h/R = 1/900. The graphs in this frame are quite compli-
cated, and the eigenfrequencies drop is a non-monotonic
function of c. A reason is that a change the shell [central beam]
length effects the ‘total rigidity’ of the composite systems of the
same total length. It is impossible to formulate a rule when the
drop reaches its maximum. In particular, one can see that, as long
as c 6 8, the eigenfrequencies x1 and x�1 are practically the same,
but the eigenfrequencies x3 and x�3 have close values for c < 4. The
minimal difference for the eigenfrequencies x2 and x�2 (about 7%)
is established for 8 < c < 11. Thus, there is a difference from the first
panel in Fig. 2 which means that working with a practical problem
may need a dedicated numerical study on the eigenfrequencies to
conclude on which from the systems is more adequate in describ-
ing the eigenoscillations. Standard design criteria are in general not
applicable.

The latter conclusion is true for the last case in Fig. 2 represent-
ing dependency of the eigenfrequencies on the c1. In calculations,
we assumed c = 2 and R/h = 900.

In summary-1, our comparative numerical analysis shows that
the condition xi 6 x�i is always fulfilled for the coupled vibrations
of the considered three-element systems and quantifies the drop of
xi versus three input parameters. It was shown that the difference
between the eigenvalues is a non-trivial function of the nondimen-
sional shell length and the nondimensional shell position, espe-
cially for higher eigenfrequencies. The closeness of the lower
eigenfrequencies of these two different systems may require a
thick and short shell with almost equal lengths of the two attached
beams.

Let us now take a look at the eigenmodes. Fig. 3 illustrates the
lower eigenmodes of BSB and BBB systems. For the BSB-system,
the beam-type eigenmodes are modeled by g1i(a1) on [0,z1], by
w1i(a) on [z1,z2] and by g2i(a2) on [z2,z3]. The first frame in Fig. 3
represents the case of two equal attached beams. In that case,
the first and third eigenmodes of the composite systems practically
coincide, but the second eigenmode differs. The second frame in
Fig. 3 illustrates two lower eigenmodes for the case of non-equal
lengths of the attached beams with c1 = 2. This ‘antisymmetric’
case causes reasonable difference for the lowest eigenmodes of
the BSB and BBB systems; it is therefore more dangerous in
modeling.

There is an expectation that the closeness of the lower eigenfre-
quencies of the BSB and BBB systems means that the BBB-system is
generally applicable for modeling the composite constructions
formed by them. However, it is wrong expectation. Even though
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Fig. 2. The eigenfrequencies versus the nondimensional shell thickness (�1/f), the shell length (c) and the shell position (c1). The remaining input nondimensional
parameters are restricted to conditions (45). The clamped-end conditions are fulfilled for the beam ends; the beam-type eigenoscillations. The solid line indicates the BSB-
system, the dashed line indicates the BBB-system.
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the lowest eigenmodes of BSB and BBB systems are very close to
each other, as in the case of two equal attached beams in the first
frame of Fig. 3, the corresponding eigenmodes may dramatically
differ from each other, especially, in a neighborhood of the shell[-
beam]–beam joining. The typical behavior of the first eigenmode
and its first-order derivative in the neighborhood is demonstrated
in Fig. 4 (c = 2, c1 = 9 and R/h = 900). Fig. 4 shows a narrow zone in
which the BSB-eigenmode changes with a high slope at the joining
point. This means that analysis on applicability of the BBB-model
must include comparison of the associated eigenmodes, too.

In summary-2, two non-equal attached beams lead to a suffi-
cient difference between the lower eigenmodes of BSB and BBB
systems. An exception is the case of the two equal beams attached
to the shell [beam] ends, for which the lower eigenmode of these
two composite systems is generally close to each other. The differ-
ence is only in a neighborhood of the shell[beam]–beam joining.
The size of this neighborhood depends on how large is ‘jump’ in
the rigidities between shell and beam at the joining point. The fact
of close eigenfrequencies for the BBB and BSB systems does not
mean that the eigenmodes are also close.

In accordance with our original formulation (transmission con-
ditions), the eigenmodes and their first-order derivative are contin-
uous at the joining. When employing the BBB-system, one can
introduce a corrector-factor K for the rigidity, (EI)* = EI/K on
[z1,z2] so that the eigenfrequencies x�i and xi coincide; the linear
mass remains the same. The first three eigenfrequencies (solid
lines) versus the bending rigidity are presented in Fig. 5. The figure
demonstrates that the K-values, for which x�i ¼ xi (intersections
with the horizontal dashes lines), are different for different eigen-
modes. These values are approximately equal to K = 8,K = 6 and
K = 9 for the first, second and third mode, respectively, and can
be adopted as a design criterion.

4.2. Shell–beam (SB) and shell–rigid body (SrB) systems

Similar comparative analysis is also possible for the eigenoscilla-
tions of the two-component shell–beam (SB) system, and the system
consisting of a circular cylindrical shell attached to a rigid body (the
SrB-system). An analysis of the SrB-system can be found in the paper
by Pellicano (2007) who proposed a solution method based on the
Sanders–Koiter theory as well as in the paper by Trotsenko (2006).
We refer interested readers to these publications.

In the forthcoming illustrative computations, we consider the
shell with the clamped-end condition, namely, (29) is satisfied;
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Fig. 3. The lower eigenmodes of the BSB and BBB systems. For the BSB-system, the beam-type eigenmodes are modeled by g1i(a1) on [0,z1], by w1i(a) on [z1,z2] and by g2i(a2)
on [z2,z3]. The clamped-end conditions are satisfied for the attached beams. The input nondimensional parameters are restricted to conditions (45) providing the same
nondimensional total length equal to 20. The first frame gives the three lowest eigenmodes for c = 2, c1 = 9, R/h = 900. The second frame corresponds to c = 2, c1 = 2, R/h = 900
and shows the two lower eigenmodes. The solid line indicates the BSB-system, the dashed line indicates the BBB-system.
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the attached beam end is restricted to the free-end condition,
namely, condition (30) is fulfilled at a2 = 0. The calculations below
are done with the nondimensional values m = 0.3 and h = 0.1. The
first frame of Fig. 6 demonstrates the first eigenfrequency of the
SB-system as function of m, c, f and c2. Within the framework of
the adopted boundary conditions, effect of the nondimensional
beam rigidity is of importance. Increasing f leads to larger eigenfre-
quencies, however, this affects only the third significant figure.
Analogous behavior is established for higher eigenfrequencies.

The beam linear mass m and the beam length c2 considerably
effect the eigenfrequencies. Increasing these parameters leads to
a fast decrease of eigenfrequencies. One should note that a consid-
erable increase of the beam mass and its rigidity establishes that

the two lower eigenfrequencies tend to zero. Furthermore, the
third eigenfrequency tends to the lowest eigenfrequency of an
auxiliary shell which has two fixed ends. For instance, when we
pose m and f equal to 106, the eigenfrequencies are x1 = 0.30588,
x2 = 0.57335 and x3 = 0.76007. These coincide with corresponding
frequencies of the shell with the clamped ends and c = 4. Trotsenko
(2006) reported the same behavior for the SrB-system.

Fig. 7 illustrates effect of the beam rigidity f on the first three
eigenmodes of the SB-system. Calculations are done with
c = c2 = 4 and m = 5. It shows that increasing f leads to considerable
changes in the eigenmodes. The same is true for higher modes.
Nevertheless, relatively large values of f lead to a fictitious beam,
whose shape is close to a strain line. This allows for an assumption
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that the beam behaves as a rigid body. Obviously, varying f and m/
f, one can reach a full consistence between the eigenfrequencies
for the SB- and SrB-systems. However, a practical matter consists
of comparing the numerical results with the same nondimensional
parameters, joint for both the beams and the rigid body, namely,
the linear mass m and the corresponding length c2. The rigidity
must be large enough.

Table 3 presents the first three eigenfrequencies of the SB- (xi)
and SrB- x�i

� �
systems versus c2 with c = 10 and f = 106. It is as-

sumed that nondimensional masses of the body and the beam
are the same and equal to m = 5. We assumed that the rigid body
has cylindrical shape of radius R and length c2. As long as c2 = 1,
the eigenfrequencies obtained by using the two systems coincide
with each other. However, the frequencies xi are slightly higher
of x�i . Increasing c2 implies decrease of the eigenfrequencies. As
far as c2 > 2, xi become considerably lower of x�i .

Fig. 8 illustrates effect of the shell length c2 on the first three
eigenmodes for the SB- and SrB-systems. It shows a reasonable dif-
ference when increasing c2 and for higher modes.

5. Concluding remarks

In the present paper, we have proposed a new semi-analytical
method for solving the problem on eigenoscillations of composite
mechanical systems consisting of shell, beam, and, possibly, a rigid
body. The method is less universal comparing with the Finite Ele-
ment Method, but our numerical experiments (see, Section 3.1)
show that it provides a fast convergence and a satisfactory accu-
racy with a relatively low number of coordinate functions. The
method is CPU-efficient and may have clear advantages in model-
ing multicomponent structures.

Based on the method, a comparative quantitative analysis on
the eigenfrequencies and the eigenmodes of BSB and BBB systems
was conducted. Dependencies on the shell thickness, length, and
position of the central object (shell or beam) were numerically
studied. Summary-1 and summary-2 of Section 4.1 gain an insight
into the quantitative differences. There are rather expected results.
In particular, the closeness of the lower eigenfrequencies of these
two different systems requires a thick and short shell with almost
equal lengths of the two attached beams. However, the quantita-
tive drop of the BSB-eigenfrequencies relative to those of the
BBB-system is a non-trivial function of the input parameters
responsible for the shell length and the shell position between
two, possibly, not equal beams. It is difficult to predict when the
drop reaches its maximum. A general recommendation is to per-
form a priori estimate of the BSB-eigenfrequencies by using a sim-
ple numerical method like the present method.

Another important fact is that, even though we deal with two
symmetric (equal) attached beam which provide a consistency be-
tween the lowest beam-type eigenmode of the BSB-system and the
lowest eigenmode of the BBB-system, there exist a serious differ-

Table 3
The first three eigenfrequencies of the SB- (xi) and SrB- x�i

� �
systems versus c2 for

c = 10, m = 5 and f = 106.

c2 x�1 x1 x�2 x2 x�3 x3

1.0 0.01541 0.01543 0.08461 0.08536 0.19950 0.20202
2.0 0.01489 0.01191 0.07937 0.07490 0.18877 0.18467
4.0 0.01384 0.00813 0.06940 0.05994 0.17039 0.15493
6.0 0.01284 0.00608 0.06138 0.04895 0.15873 0.13569
8.0 0.01191 0.00478 0.05542 0.04109 0.15171 0.12519

10.0 0.01105 0.00389 0.05106 0.03549 0.14726 0.1191
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ence between the eigenmodes in a local neighborhood of the shell–
beam joining. The difference is a function of jump of the rigidities.
As far as the design involves the eigenmodes, the reliable calcula-
tions should employ the BSB-model instead of the BBB-model. Fi-
nally, we cannot conclude on the closeness of the eigenmodes by
employing the closeness of the eigenfunctions. Along with the
aforementioned local differences at the joining, one can expect a
global difference for certain cases.

When studying eigenoscillations of the SB-system, we showed
that the eigenfrequencies are sensitive to varying the beam mass
m and its length c2. Effect of the beam rigidity was found to be
not so important. Comparative analysis of the eigenoscillations
for the SB- and SrB-systems reflects satisfactory agreement be-
tween them for relatively short beams. In view of practical conve-
nience, the SrB-system is much more preferable. However,
ignoring the body flexibility may lead to larger theoretical eigen-
frequencies. The body length is primary factor that influences the
eigenfrequencies and modes.
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Appendix A. Dynamic equations and transmission conditions

To derive dynamic equations and transmission conditions, we
can, for instance, use equivalence of the virtual work done by
external forces (here, inertia forces) and variation of the potential
energy due to small deviation relative to the static state

dP ¼ dA: ðA:1Þ
The potential energy of the shell can be presented within the frame-
work of the Mushtari–Donnell–Vlasov theory (Novozhilov, 1964).
Because of our simplification, contribution to the potential energy
from the beams is associated with flexure in the Oxz-plane. The po-
tential energy of the whole BSB-system is therefore

P ¼ Eh
2ð1� m2Þ
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where D = Eh3/(12(1 � m2)). The first integral (over R) in Eq. (A.2)
implies the potential energy due stretch and shear deformations
of the shell. The second integral is caused by bending and torsion
deformations.

Variations of the potential energy (A.2) are expressed as

dP ¼ � Eh
ð1� m2Þ
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Here, we adopted notations (10) and (12).
The virtual work caused by the inertia forces and virtual dis-

placements du, dv, dw and dnk can be presented as

dA ¼ � qh
Z Z

R

o2u
ot2 duþ o2v

ot2 dv þ o2w
ot2 dw

 !
dR

�
Z z1

0
m1

o2n1

ot2 dn1 dz�
Z z3

z2

m2
o2n2

ot2 dn2 dz: ðA:4Þ

Variations du, dv, dw and dnk depend on contours formed by the con-
tact points of shell and beams. The functions du, dv, dw and dnk are
subject to Eqs. (5) and (6). Accounting for this fact, substitution of
(A.3) and (A.4) into Eq. (A.1) gives the partial differential equations
(9), boundary conditions (7) or (8) on the beams ends and the dy-
namic transmission conditions (11) on the two shell ends.

Appendix B. Expressions for elements of matrices A and B

The following integrals are introduced:

U1ðf ;hÞ ¼
Z c

0
W11ðf ; f Þ � 2W13ðh; f Þ þW33ðh;hÞ½ �da;

U2ðf ;hÞ ¼
Z c

0
W22ðf ; f Þ � 2W23ðh; f Þ þW33ðh;hÞ½ �da;

U3ðf ; g;hÞ ¼
Z c

0
W12ðf ; f Þ �W13ðg; f Þ �W23ðh; f Þ þW33ðh; gÞ½ �da;

F1 ¼
Z c

0
�W11ðf2; f1Þ þW13ðh2; f1Þ þW13ðh1; f2Þ �W33ðh2; h1Þ½ �da;

F2 ¼
Z c

0
W12ðf2; f1Þ �W13ðg2; f1Þ �W23ðh1; f2Þ þW33ðg2;h1Þ½ �da;

F3 ¼
Z c

0
�W12ðf1; f2Þ þW13ðg1; f2Þ þW23ðh2; f1Þ �W33ðh2; g1Þ½ �da;

F4 ¼
Z c

0
W22ðf2; f1Þ �W23ðg2; f1Þ �W23ðg1; f2Þ þW33ðg2; g1Þ½ �da;

a11ðiÞ ¼
Z c

0
W13ðh1;UiÞ �W11ðf1;UiÞ½ �da;

a12ðiÞ ¼
Z c

0
W13ðg1;UiÞ �W12ðf1;UiÞ½ �da;

a13ðiÞ ¼
Z c

0
W13ðh2;UiÞ �W11ðf2;UiÞ½ �da;

a14ðiÞ ¼
Z c

0
W13ðg2;UiÞ �W12ðf2;UiÞ½ �da;

a21ðiÞ ¼
Z c

0
W23ðh1;ViÞ �W12ðVi; f1Þ½ �da;

a22ðiÞ ¼
Z c

0
W23ðg1;ViÞ �W22ðf1;ViÞ½ �da;

a23ðiÞ ¼
Z c

0
W23ðh2;ViÞ �W12ðVi; f2Þ½ �da;

a24ðiÞ ¼
Z c

0
W23ðg2;ViÞ �W22ðf2;ViÞ½ �da;

a31ðiÞ ¼
Z c

0
W33ðh1;WiÞ �W13ðWi; f1Þ½ �da;

a32ðiÞ ¼
Z c

0
W33ðg1;WiÞ �W23ðWi; f1Þ½ �da;

a33ðiÞ ¼
Z c

0
W33ðh2;WiÞ �W13ðWi; f2Þ½ �da;

a34ðiÞ ¼
Z c

0
W33ðg2;WiÞ �W23ðWi; f2Þ½ �da:

The beams functions U(bkak), V(bkak) and their first derivatives at
ak = ck (k = 1,2) are denoted as
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u0k ¼ UðbkckÞ; v0k ¼ VðbkckÞ; u00k ¼
dUðbkakÞ

dak

����
ak¼ck

;

v 00k ¼
dVðbkakÞ

dak

����
ak¼ck

; ðu0kv0kÞ0 ¼
d

dak
U bkakð ÞV bkakð Þ½ �

����
ak¼ck

:

Within the introduced notations, the over-diagonal elements of A
can be presented as

ai;j¼
Z c

0
W11ðUj;UiÞda; ai;jþN¼

Z c

0
W12ðVj;UiÞda;

ai;jþ2N¼
Z c

0
W13ðWj;UiÞda; aiþN;jþN¼

Z c

0
W22ðVj;ViÞda;

aiþN;jþ2N¼
Z c

0
W23ðWj;ViÞda; aiþ2N;jþ2N¼

Z c

0
W33ðWj;WiÞda;

ai;N1 ¼u001a11ðiÞþu01a12ðiÞ; ai;N2 ¼v 001a11ðiÞþv01a12ðiÞ;
ai;N3 ¼�u002a13ðiÞþu02a14ðiÞ; ai;N4 ¼�v 002a13ðiÞþv02a14ðiÞ;
aiþN;N1 ¼u001a21ðiÞþu01a22ðiÞ; aiþN;N2 ¼v 001a21ðiÞþv01a22ðiÞ;
aiþN;N3 ¼�u002a23ðiÞþu02a24ðiÞ; aiþN;N4 ¼�v 002a23ðiÞþv02a24ðiÞ;
aiþ2N;N1 ¼u001a31ðiÞþu01a32ðiÞ; aiþ2N;N2 ¼v 001a31ðiÞþv01a32ðiÞ;
aiþ2N;N3 ¼�u002a33ðiÞþu02a34ðiÞ; aiþ2N;N4 ¼�v 002a33ðiÞþv02a34ðiÞ;

aN1 ;N1 ¼Cð1Þ11 þ u001

� �2
U1ðf1;h1Þþ2u01u001U3ðf1;g1;h1Þþðu01Þ2U2ðf1;g1Þ;

aN1 ;N2 ¼Cð1Þ12 þu001v 001U1ðf1;h1Þþðu01v01Þ0U3ðf1;g1;h1Þþu01v01U2ðf1;g1Þ;
aN1 ;N3 ¼u001u002F1þu02u001F2þu01u002F3þu01u02F4;

aN1 ;N4 ¼u001v
0
02F1þv02u001F2þu01v 002F3þu01v02F4;

aN2 ;N2 ¼Cð1Þ22 þ v 001

� �2
U1ðf1;h1Þþ2v01v 001U3ðf1;g1;h1Þþðv01Þ2U2ðf1;g1Þ;

aN2 ;N3 ¼v 001u002F1þu02v 001F2þv01u002F3þv01u02F4;

aN2 ;N4 ¼v 001v
0
02F1þv02v 001F2þv01v 002F3þv01v02F4;

aN3 ;N3 ¼Cð2Þ11 þ u002

� �2
U1ðf2;h2Þ�2u02u002U3ðf2;g2;h2Þþðu02Þ2U2ðf2;g2Þ;

aN3 ;N4 ¼Cð2Þ12 þu002v 002U1ðf2;h2Þ�ðu02v02Þ0U3ðf2;g2;h2Þþu02v02U2ðf2;g2Þ;

aN4 ;N4 ¼Cð2Þ22 þ v 002

� �2
U1ðf2;h2Þ�2v02v 002U3ðf2;g2;h2Þþðv02Þ2U2ðf2;g2Þ;

where

CðkÞ11 ¼ ð1� m2Þfkb
3
kðST � VUÞak¼ck

;

CðkÞ12 ¼ ð1� m2Þfkb
3
kðT

2 � SUÞak¼ck
;

CðkÞ22 ¼ ð1� m2Þfkb
3
kðTU � SVÞak¼ck

; k ¼ 1;2;

Ni ¼ 3N þ i; i ¼ 1; . . . ;4:

Here, S, T, U and V are the Krylov functions. Expressions for U and V
are given above, S and T take the following form:

SðbaÞ ¼ 1
2
ðcosh baþ cos baÞ; TðbaÞ ¼ 1

2
ðsinh baþ sin baÞ:

Let us introduce the following integrals:

ðf ; gÞ ¼
Z c

0
fg da; Eðf ; gÞ ¼

Z c

0
ðf 2 þ g2Þda;

FH ¼
Z c

0
ðf1f2 þ h1h2Þda; FG ¼

Z c

0
ðf1f2 þ g1g2Þda:

The corresponding elements of the matrix B can then be presented
as follows:

bi;j ¼ ðUj;UiÞ; bi;jþN ¼ 0; bi;jþ2N ¼ 0; bi;N1 ¼ �u001ðf1;UiÞ;
bi;N2 ¼ �v 001ðf1;UiÞ; bi;N3 ¼ u002ðf2;UiÞ; bi;N4 ¼ v 002ðf2;UiÞ;
biþN;jþN ¼ ðVj;ViÞ; biþN;jþ2N ¼ 0; biþN;N1 ¼ �u01ðf1;ViÞ;
biþN;N2 ¼ �v01ðf1;ViÞ; biþN;N3 ¼ �u02ðf2;ViÞ;
biþN;N4 ¼ �v02ðf2;ViÞ;

biþ2N;jþ2N ¼ ðWj;WiÞ; biþ2N;N1 ¼ u01ðg1;WiÞ þ u001ðh1;WiÞ;
biþ2N;N2 ¼ v01ðg1;WiÞ þ v 001ðh1;WiÞ;
biþ2N;N3 ¼ u02ðg2;WiÞ � u002ðh2;WiÞ;
biþ2N;N4 ¼ v02ðg2;WiÞ � v 002ðh2;WiÞ;

bN1 ;N1 ¼ u001

� �2Eðf1; h1Þ þ 2u01u001ðg1;h1Þ þ ðu01Þ2Eðf1; g1Þ;
bN1 ;N2 ¼ u001v

0
01Eðf1;h1Þ þ u01v01Eðf1; g1Þ þ ðu01v01Þ0ðg1;h1Þ;

bN1 ;N3 ¼ �u001u002FH þ u01u02FG� u01u002ðg1;h2Þ þ u02u001ðg2;h1Þ;
bN1 ;N4 ¼ �u001v 002FH þ u01v02FG� u01v 002ðg1; h2Þ þ v02u001ðg2;h1Þ;

bN2 ;N2 ¼ v 001

� �2Eðf1;h1Þ þ 2v01v 001ðg1; h1Þ þ ðv01Þ2Eðf1; g1Þ;
bN2 ;N3 ¼ �v 001u002FH þ v01u02FG� v01u002ðg1; h2Þ þ u02v 001ðg2;h1Þ;
bN2 ;N4 ¼ �v 001v

0
02FH þ v01v02FG� v01v 002ðg1;h2Þ þ v02v 001ðg2;h1Þ;

bN3 ;N3 ¼ u002

� �2Eðf2; h2Þ � 2u02u002ðg2;h2Þ þ ðu02Þ2Eðf2; g2Þ;
bN3 ;N4 ¼ u002v 002Eðf2;h2Þ þ u02v02Eðf2; g2Þ � ðu02v02Þ0ðg2;h2Þ;

bN4 ;N4 ¼ v 002

� �2Eðf2;h2Þ � 2v02v 002ðg2; h2Þ þ ðv02Þ2Eðf2; g2Þ:
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