
Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 765–767

Integrable Polynomial Potentials

in N -Body Problems on the Line

Andrij VUS

Dept. of Mathematics and Mechanics, 1 Universytetska Str., Lviv 79000, Ukraine
E-mail: matmod@franko.lviv.ua

Integrable natural systems of n interacting particles on the line are investigated under as-
sumption that the interacting potential is a polynomial. Restriction for degree of these
potentials is obtained both for systems with pairwise interaction and for the case of lattices.

Dynamics of n equal pair-interactive particles on the line is described by the Hamiltonian
system with the Hamiltonian

H =
1
2

n∑
i=1

p2
i +

∑
i<j

V (xi − xj), (1)

where the xi and pi, i = 1, . . . , n, are the coordinates and momenta of the particles. We hence-
forth call the function V a potential. Complete integrability of this system was established
in [1, 2] for the Weierstrass P-function as the interaction potential. Moreover, this system
possesses a complete collection of integrals which are polynomials in the momenta and are in
involution. It is therefore natural to obtain a description of Hamiltonians (1) which admit in-
tegrals that are polynomials in the momenta. We are interested in considering the problem of
integrability of such natural system of interacting particles in Liouville’s sense for polynomial
potential V (z), such that deg V (z) = k > 2.

Theorem 1. Let the potential V (z) admit an integral F , which is polynomial in the momenta.
Then the potential zk admits a nontrivial integral, which is also polynomial.

Theorem 2. The 3-body problem with the Hamiltonian (1) is integrable if and only if k � 4.

Proof. The total momentum P =
∑

pi is the first integral of the system under considera-
tion. Therefore this system can be reduced to the system with two degrees of freedom and the
Hamiltonian

H =
1
2

(
p2
1 + p2

2

)
+ V (x) + V

(
−x

2
+

y
√

3
2

)
+ V

(
−x

2
− y

√
3

2

)
.

Now we shall use the Yoshida’s theorem [3] on the nonintegrability of natural systems with
homogeneous potential. According to his algorithm, we calculate the Kowalewski’s indicators

∆�i =
(
1 + 8kλi/(k − 2)2

)1/2
,

where λi are the eigenvalues of the matrix Γ = ∂2W
∂x2 (c), c ∈ Cn is a nontrivial solution of the

system of equations

∂W

∂xj
(c) = cj , 1 � j � n. (2)



766 A. Vus

In our case

W = xk +

(
−x

2
+

y
√

3
2

)k

+

(
−x

2
− y

√
3

2

)k

.

The solution of the system (2) is

c1 =
(
2k−1/k

(
1 + 2k−1

))1/(k−2)
, (3)

c2 = 0. (4)

The Kowalewski’s indicators are

∆�1 =
3k − 2
k − 2

∈ Q,

∆�2 =
(

1 +
24k(k − 1)

(k − 2)2(1 + 2k−1)

)1/2

. (5)

To show that ∆�2 /∈ Q consider the Diophantine equation

1 +
24k(k − 1)

(k − 2)2(1 + 2k−1)
=

(
l

(k − 2)(1 + 2k−1)

)1/2

.

One can easily prove that for k > 10 l /∈ N , and it is easy to calculate l for k � 10 directly and
check that l also is not natural. �

The analogous result is established for the case of n pair-interactive particles on the line.

Theorem 3. The n-body problem with the Hamiltonian (1) is nonintegrable for k > 2.

Proof. First of all we reduce the system of n particles to the system with two degrees of
freedom. Let the initial conditions of the dynamics are

x1 = x2 = · · · = xr = y, (6)
xr+1 = · · · = x2r = −y, (7)
x2r+1 = −x2r+2 = x, (8)
ẋ1 = ẋ2 = · · · = ẋr = py, (9)
ẋr+1 = · · · = ẋ2r = −py, (10)
ẋ2r+1 = −ẋ2r+2 = px (11)

for n = 2(r + 1), and additionally

x2r+3 = ẋ2r+3 = 0

for odd values of n (n = 2(r +1)+1). Then the reduced Hamiltonian can be written in the form

H = p2
x + rp2

y + W (x, y),

where

W (x, y) = 2r
(
(x − y)k + (x + y)k

)
+ (2x)k + r2(2y)k

for n = 2(r + 1) and

W (x, y) = 2r
(
(x − y)k + (x + y)k

)
+ (2x)k + r2(2y)k + 2xk + 2ryk

for n = 2(r +1)+1. The analogous Diophantine equations can be easily considered and one can
prove that these equations do not have solutions for k > 2. �
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Consider now the problem of integrability of the system of (n + 1) interactive particles with
the Hamiltonian

H =
1
2

n+1∑
i=1

p2
i +

n∑
i=1

V (xi − xi+1) + λV (xn+1 − x1), (12)

where λ can be equal to 0 or 1.

Theorem 4. The system with the Hamiltonian (12) can be reduced to the system with two
degrees of freedom and the Hamiltonian

H =
1
2

(
p2
1 + p2

2

)
+ V (x) + λV

(
x

n
+

y
√

n2 − 1
n

)
+ (n − 1)V

(
x

n
− y

√
n2 − 1

n(n − 1)

)
. (13)

Theorem 5. The systems with the Hamiltonians (13) for λ ∈ {0, 1} do not possess the additional
first integral for k > 2.

The proof of the Theorem 5 is based on considering the Kowalewski’s indicators for the
Hamiltonian (13). In this case also ∆�1 = 3k−2

k−2 ∈ Q and it is proved that ∆�2 /∈ Q for values
k > 2.
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