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We obtain sufficient conditions for the solution found with the help of conditional symmetry
operators to be an invariant one in classical Lie sense. Several examples of nonlinear partial
differential equations are considered.

1 Introduction

It is well known that the symmetry reduction method is very efficient for construction of exact
solutions for nonlinear partial differential equations of mathematical physics. With the help
of symmetry operators one can find ansatze which reduce partial differential equation to the
equation with smaller number of independent variables. Application of conditional symmetry
operators essentially widens the class of ansatze reducing initial differential equation [1, 2, 3].
It turns out however that some of these ansatze result in the classical invariant solutions. It
is obvious that the existence of conditional symmetry operator does not guarantee that the
solution obtained with the help of corresponding ansatz is really new that it is not invariant
solution in the classical Lie sense. We have proved theorem allowing us to exclude the operators
that lead to the classical invariant solutions.

2 Basic theorem

Let us consider some partial differential equation

U(x, u, u1, . . . , uk) = 0, (1)

where u ∈ Ck
(
R

n, R1
)
, x ∈ R

n, and uk denotes all partial derivatives of k-th order. Suppose
that the following conditions are fulfilled.

1. Equation (1) is conditionally invariant under involutive family of operators {Qi}, i = 1, p

Qi = ξ′li(x, u)
∂

∂xl
+ η′i(x, u)

∂

∂u
(2)

and corresponding ansatz reduces this equation to ordinary differential equation.
2. There exists the general solution of reduced equation in the following form

u = f(x, C1, . . . , Ct), (3)

where f is arbitrary smooth function of its arguments, C1, . . . , Ct are arbitrary real constants.
The following theorem has been proved.

Theorem 1. Let equation (1) be invariant under the m-dimensional Lie algebra AGm with basis
elements:

Xj = ξ̃′lj(x)
∂

∂xl
+ η̃j(x, u)

∂

∂u
, j = 1, . . . , m, (4)
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and conditionally invariant with respect to involutive family of operators {Qi} satisfying condi-
tions 1, 2.

If the system

ξ′li
∂u

∂xi
= η′i(x, u) (5)

is invariant under s-dimensional subalgebra AGswith basis elements

Ya = ξl
a(x)

∂

∂xl
, a = 1, s, (6)

of algebra AGm and s ≥ t + 1, then conditionally invariant solution of equation (1) with respect
to involutive family of operators {Qi} is an invariant solution in the classical Lie sense.

Proof. From the theorem conditions it follows that the system of equations (1), (5) is invariant
with respect to AGs algebra with basis elements Ya. Consider one parameter subgroup of trans-
formations of space X×U (variables x, u) with infinitesimal operator Yj . These transformations
map any solution from (3) into solution of system (1), (5). Thus the following relations

u − f
(
x′, C1, C2, . . . , Ct

)
= u − f

(
x, C ′

1, . . . , C
′
t

)
, (7)

where a ∈ R
1, C ′

1, . . . C
′
t depend on C1, . . . Ct, a, are fulfilled in this case. Equality (7) is true for

arbitrary group parameter a ∈ R
1. Considering it in the vicinity of point a = 0 we obtain

ξl
a(x)

∂f

∂xl
= − ∂f

∂C1
βj1 − · · · − ∂f

∂Ct
βjt, j = 1, s, (8)

where βjk = ∂C′
k

∂a at the point a = 0. As far as the mentioned reasoning is valid for arbitrary
operator Yj then condition (8) is equivalent to the following system of s equations

Yjf = −
t∑

k=1

∂f

∂Ck
βjk, 1 ≤ j ≤ s. (9)

From system (9) it follows that there exist such real constants γp that the the condition

s∑
p=1

γpYpf = 0,

is true since s ≥ t + 1. Therefore the solution u = f(x, C1, . . . , Ct) is invariant with respect to

one-parameter Lie group with infinitesimal operator Q =
s∑

p=1
γpYp. �

Note that theorem can be generalized for infinitesimal operators of the form

Ya = ξl
a(x)

∂

∂xl
+ ηa(x, u), (10)

where

ηa(x, u) = Fa(x)u + Φa(x), (11)

and Fa(x) and Φa(x) are arbitrary smooth functions.
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3 Examples

Now consider several examples. We first study nonlinear wave equation

uxt = sinu. (12)

We prove that equation (12) is conditionally invariant with respect to the operator

X =
(

uxx +
1
2

tan uu2
x

)
∂u. (13)

We use the definition of conditional symmetry for arbitrary differential equation given in [4].
Therefore we can use the following differential consequences

Dx(uxt − sin u) = 0, D2
x(uxt − sinu) = 0, Dx(η) = 0, (14)

and

ut = −2 cos u

ux
. (15)

It is easy to verify that the equality

X
2
(uxt − sinu) = 0,

where X
2

is the extended symmetry operator of the second order, is satisfied on the manifold

given by relations (12), (14), (15). Thus equation (12) is conditionally invariant with respect to
the Lie–Bäcklund vector field (13). That is why we can reduce it by means of the ansatz which
is the solution of the following equation

uxx +
1
2

tan uu2
x = 0 (16)

and has an implicit form

H(u) = C(t)x + α(t), (17)

where

H(u) =
∫

du√
cos u

.

Substituting (17) into (12) we receive the reduced system in the form

C ′(t) = 0,
1
2
C(t)α′(t) + 1 = 0.

Finally by integrating this system we obtain solution of equation (12)

H(u) = C1x − 2
C1

t + C2. (18)

Both of equations (12) and (16) are invariant with respect to three-dimensional Lie algebra with
basis elements

Q1 = ux∂u, Q2 = ut∂u, Q3 = (tut − xux)∂u.
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And also the solution depends on two constants. So, the theorem conditions are fulfilled. Thus
we conclude that solution (18) is an invariant one in the classical Lie sense as a consequence of
theorem. It is obvious that there exist the linear combination of operators Q1, Q2, Q3 such that
obtained solution is invariant under transformations generated by this operator.

Now consider equation

ut − uxx = λ exp(u)ux + u2
x. (19)

It has been proved that equation (19) is conditionally invariant with respect to operator

Q =
(
uxx + u2

x

) ∂

∂u
.

The corresponding ansatz has the form

u = ln(f(t)x + φ(t)), (20)

where f , φ are unknown functions. Substitution of (20) in (19) yields the system of two ordinary
differential equations in the form

f ′ = λf2, φ′ = λfφ.

Having integrated this system one can obtain exact solution of equation (19)

u = ln
(

x + C1

C − λt

)
. (21)

Note, that equation

uxx + u2
x = 0

is invariant with respect to three-dimensional algebra with basis elements

Q1 =
∂

∂t
, Q2 =

∂

∂x
, Q3 = 2t

∂

∂t
+ x

∂

∂x
− ∂

∂u
.

Thus according to theorem the solution (21) is an invariant one.
It can be verified that solution (21) is invariant with respect to one-parameter transformation

group with infinitesimal operator

Q = αQ1 + βQ2 + γQ3

when α = γC1, β = −2γCλ−1.
Finally consider equation

ut − a(u)uxx = u(1 − a(u)), (22)

where a(u) is arbitrary smooth function. We have proved that equation (22) is conditionally
invariant with respect to operator

Q = (uxx − u)
∂

∂u
.

The invariance surface condition leads to the following ansatz

u(t, x) = φ1(t) exp x + φ2(t) exp(−x),

which reduces considered equation. It is easy to construct an exact solution of equation (22)
using this approach in the form

u = A exp(t + x) + B exp(t − x), (23)

where A, B are real constants.
It should be noted that the maximal invariance Lie algebra of point transformations is two-

dimensional algebra with basis operators ∂t, ∂x. But solution (23) depends on two constants.
Therefore the theorem conditions are not satisfied. Really it is easy to prove, that solution (23)
cannot be constructed by means of Lie point group technique.
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4 Conclusion

Thus we obtain a sufficient condition for the solution found with the help of conditional symmet-
ry operators to be an invariant solution in the classical sense. The theorem proved by means of
infinitesimal invariance method allows us to optimize the algorithm for construction of condi-
tional symmetry operators, a priori excluding the operators that lead to the classical invariant
solutions. It is obvious that this theorem can be generalized and applicable to construction of
exact solutions for partial differential equations by using the method of differential constraints,
Lie–Bäcklund symmetry method and the approach suggested in [5].
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