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In this work we study involutions in finitely presented ∗-algebras which preserve the natural
filtration.

1 Introduction

Introducing additional structures is often useful in a study of algebraic objects, in particular
finitely presented algebras and their representations, – introducing topology in algebras gives
a comprehensive theory of Banach algebras or, more generally, a theory of locally convex alge-
bras; introducing an involution, which we can consider as some inner symmetry, calls into being
the theory of ∗-algebras; considering an involution together with the corresponding norm gives
the theory of C∗-algebras. Moreover, on the one hand, studying not all representations but only
those which “conserve” this additional structure (for example, ∗-representations) is simple (for
example, ∗-representations are indecomposable if and only if they is irreducible, see [1]) on the
other hand, this is often sufficient for applications.

In [1] the theory of ∗-representations of finitely presented ∗-algebras is studied, and the
involution in the considered ∗-algebras often preserves filtration (see Definition 1). In this
article we consider the following question. Let Fn be a free algebra with n generators x1, . . . , xn

and an identity e, and lets us also have a unital finitely presented algebra

A = C〈x1, . . . , xn | q1 = 0, . . . , qm = 0 〉,

where qk ∈ F, k = 1, . . . , m. We can assume, without loss of generality, that all relations qk

are nonlinear, for otherwise, the algebra A is isomorphic to an algebra with a smaller number
of generators (roughly speaking, we can exclude generators that are linear combinations of
the others). We will denote by V (A) the linear subspace of A generated by the elements
x0 = e, x1, . . . , xn. Then the question is how many involutions which map V (A) into itself exist
in the algebra A such that the corresponding ∗-algebras are not ∗-isomorphic.

The answer is that such an involution is unique and so we can always suppose that the
generators are self-adjoint (see Theorem 1 and Proposition 1). Moreover, in some cases there is
a ∗-isomorphism between the corresponding ∗-algebras such as it “conserves” the relations (see
Theorem 1 and examples).

2 Main result

We will denote the free ∗-algebra with n self-adjoint generators zk by F
∗
n. Some other involution

will be denoted by �. It is given by defining its values on generators. We will denote the free
∗-algebra with such an involution by

F
�
n = C〈x1, . . . , xn |x�

k = pk, k = 1, . . . , n 〉,

where pk ∈ Fn.
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Definition 1. We say that an involution � of a ∗-algebra A� preserves the natural filtration iff
the involution maps V(A�) into itself.

Theorem 1. Let an involution � of the ∗-algebra F
�
n preserve the natural filtration. Then there

is a ∗-isomorphism ϕ : F
∗
n → F

�
n. Moreover, ϕ(V (F∗

n)) = V (F�
n).

Proof. We can assume that the first n − l generators are self-adjoint and the others are not,
such otherwise, we can renumber the generators. We will prove the theorem by induction on
the number l of the generators that are not self-adjoint.

If l = 0 then there is nothing to prove, since all the generators are self-adjoint.
Let 1 � l � n. Put

yk =
xk + x�

k

2
, k = 0, . . . , n.

It is evident that y�
k = yk. Because the involution preserves the filtration, x�

k ∈ V (F�
n) and so

yk ∈ V (F�
n).

If y0 = e, y1, . . . , yn are linearly independent then we define ϕ : F
∗
n → F

�
n on the generators

by ϕ(zk) = yk, k = 0, . . . , n, z0 = e. Since dimV (F�
n) = n + 1 and y0, y1, . . . , yn are linearly

independent and lie in V (F�
n), yk, k = 0, . . . , n, is a linear basis of V (F�

n) and so

xk =
n∑

j=0

αj
kyj , αj

k ∈ C.

Then the homomorphism inverse to ϕ is defined on the generators by

ϕ−1(xk) =
n∑

j=0

αj
kzj .

So ϕ is an isomorphism of the algebras F
�
n and F

∗
n. It is evident that ϕ is also a ∗-homomorphism

and ϕ(V (F∗
n)) = V (F�

n).
Let now y0 = e, y1, . . . , yn be linearly dependent. Then, since the first n − l generators are

self-adjoint, yj = xj for j = 0, . . . , n − l and, consequently, yj are linearly independent. Then
there exists k (n − l < k � n) such that

yk =
∑
j �=k

λjyj , λj ∈ C.

And since yj are self-adjoint,

yk =
∑
j �=k

λjyj , λj ∈ C.

If we put aj = (λj + λj)/2 then we get

yk =
∑
j �=k

ajyj , aj ∈ R.

Renumbering the generators we can suppose that k = n − l + 1.
Put

F
�1
n = C〈 v1, . . . , vn | v�1

j = vj , j = 1, . . . , k, v�1
j = qj , j > k 〉,
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where

qj = pj


v1, . . . , vk−1,−2ivk +

∑
j �=k

ajvj , vk+1, . . . , vn


 , j > k.

Define ψ : F
�1
n → F

�
n on generators by the formula ψ(vj) = xj , if j �= k, and

ψ(vk) =
i

2


xk −

∑
j �=k

ajxj


 .

It is evident that ψ is an isomorphism of the algebras F
�1
n and F

�
n. Let us show that ψ is

a ∗-homomorphism.
If j < k, then ψ(vj)� = x�

j = xj = ψ(vj) = ψ(v�1
j ).

If j > k, then ψ(vj)� = x�
j = pj and again

ψ(v�1
j ) = ψ(qj) = ψ


pj


v1, . . . , vk−1,−2ivk +

∑
j �=k

ajvj , vk+1, . . . , vn







= pj


x1, . . . , xk−1, xk −

∑
j �=k

ajxj +
∑
j �=k

ajxj , xk+1, . . . , xn


 = pj = ψ(v�1

j ).

Finally,

ψ(vk)� = − i

2


x�

k −
∑
j �=k

ajx
�
j


 and ψ(v�1

k ) = ψ(vk) =
i

2


xk −

∑
j �=k

ajxj


 .

So

ψ(v�1
k ) − ψ(vk)� = i


yk −

∑
j �=k

ajyj


 = 0,

i.e., ψ(v∗k) = ψ(vk)∗.
We have proved that F

�
n and F

�1
n are ∗-isomorphic. Further, by the definition of ψ we again

have ψ(V (F�1
n )) = V (F�

n). And now we have l− 1 generators in F
�1
n that are not self-adjoint and

so, by the inductive assumption, F
�1
n is ∗-isomorphic to F

∗
n and, consequently, F

�
n is ∗-isomorphic

to F
∗
n. �

3 Corollary and examples

In this section we will obtain a corollary of Theorem 1 and consider some examples.
Consider the ∗-algebra

A = C〈x1, . . . , xn |x�
k = pk, k = 1, . . . , n, r1 = 0, . . . , rm = 0 〉,

where rk ∈ Fn, k = 0, . . . , m. Let I be a ∗-ideal generated by r1, . . . , rm, i.e., A is a ∗-isomorphic
to the factor F

�
n/I.

By increasing the number of generators (not more than two times) and adding new relations
we always can construct a ∗-algebra which is ∗-isomorphic to A such that its generators are
self-adjoint. The corollary of Theorem 1 claims that if the involution is “good” then we can
leave the number of the generators and relations the same as in A and the length of words in
the relations does not grow.
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Proposition 1. Let the involution � preserves the filtration. Then the ∗-algebra A is ∗-
isomorphic to the ∗-algebra

B = C〈 z1, . . . , zn | z∗k = zk, k = 1, . . . , n, s1 = 0, . . . , sm = 0 〉,
where sk have the same degrees as rk, k = 1, . . . , m.

Proof. Since the involution � preserves the filtration then, there exists a ∗-isomorphism ϕ :
F

�
n → F

∗
n. Denote by J = ϕ(I) the ∗-ideal generated by the relations s1 = ϕ(r1), . . . , sm = ϕ(rm).

It is evident that so defined sk have the same degrees as rk. Then we can put B = F
∗
n/J.

Let i be an injection of I into F
�
n and π a projection of the latter into A. Similarly, let i0 be

an injection of J into F
∗
n and π0 a projection into B. The restriction of ϕ to I will be denoted

by ϕ0. Then we get a commutative diagram of ∗-homomorphisms,

0 −−−−→ I i−−−−→ F
�
n

π−−−−→ A −−−−→ 0�ϕ0

�ϕ

�ψ

0 −−−−→ J i0−−−−→ F
∗
n

π0−−−−→ B −−−−→ 0

where ψ is defined by the formula ψ(π(a)) = π0(ϕ(a)), for any a ∈ F
�
n.

Now we show that ψ is well-defined. Indeed, since π is surjective, ψ is defined for all elements
of A. If π(a) = 0 then a ∈ I and so ϕ(a) ∈ J, consequently, ψ(π(a)) = π0(ϕ(a)) = 0.

It is evident that ψ is surjective. Now we show that it is injective.Indeed, if ψ(π(a)) = 0, then
it means that π0(ϕ(a)) = 0 and so ϕ(a) ∈ J, consequently, a ∈ I, from where we get π(a) = 0.
It is also evident that ψ is a ∗-homomorphism.

So we have constructed a ∗-isomorphism of the ∗-algebras A and B. �

Actually we have “changed” the generators in A so that the new generators are self-adjoint.
But the next example shows that, generally speaking, the relations are changed too.

Example 1. Consider the ∗-algebra

Q2 = C〈 q1, q2 | q�
1 = q2, q

�
2 = q1, q

2
1 = q1, q

2
2 = q2 〉.

A ∗-isomorphism ϕ : F
�
2 → F

∗
2 is defined by the formulas

ϕ(q1) = z1 + iz2, ϕ(q2) = z1 − iz2.

Then

ϕ(q2
1 − q1) = (z1 + iz2)2 − z1 − iz2 = z2

1 − z2
2 + i{z1, z2} − z1 − iz2,

similarly

ϕ(q2
2 − q2) = z2

1 − z2
2 − i{z1, z2} − z1 + iz2,

where { , } is the anticommutator.
It is evident that the ideal generated by these relations is also generated by the relations

z2
1 − z2

2 = z1 and {z1, z2} = z2.

So Q2 is ∗-isomorphic to the ∗-algebra

C〈 z1, z2 | z∗1 = z1, z
∗
2 = z2, z

2
1 − z2

2 = z1, {z1, z2} = z1 〉.
On the other hand, it is not difficult to show that there is no ∗-isomorphisms between Q2

and the ∗-algebra

C〈x1, x2 |x∗
1 = x1, x

∗
2 = x2, x

2
1 = x1, x

2
2 = x2 〉.
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The next two examples show that there are algebras that are not free for which an analogue
of Theorem 1 is also true.

Example 2. Consider the ∗-algebra of polynomials in n variables, Pn. It is a factor of the free
algebra by the ideal I generated by the relations

[xj , xk] = 0, j, k = 1, . . . n,

where [ , ] is the commutator. All elements of the ideal I can be written as [p1, p2], where
p1, p2 ∈ Fn. Then, for any involution in Fn, [p1, p2]� = [p�

2, p
�
1] ∈ I so I is a ∗-ideal. Let �

preserves the filtration. Then the ∗-ideal ϕ(I) consists of all elements which can be written as
[ϕ(p1), ϕ(p2)]. So it is generated by the relations

[zj , zk] = 0, j, k = 1, . . . n,

And we have the ∗-isomorphism of P ∗
n and P �

n .

Example 3. Consider one more algebra for which a theorem analogous to Theorem 1 holds.
Let

A = C〈 p, q | [[p, q], p] = 0, [[p, q], q] = 0 〉.

Let I be an ideal generated by the corresponding relations. Then it is evident that for any
a, b, c ∈ V (F�

n) we have [[a, b], c] ∈ I.
Now, let us introduce in A an involution � which preserves the filtration. Let us show that

the ideal I is a ∗-ideal,

−[[p, q], p]� = [p, [p, q]]� = [[p, q]�, p�] = [[q�, p�], p�],

but p�, q� ∈ V (F�
n) so [[p, q], p]� ∈ I. Similarly, [[p, q], q]� ∈ I.

Since � preserves the filtration, by Theorem 1 there is a ∗-isomorphism ϕ : F
�
2 → F

∗
2 and

there exist elements a1, a2 ∈ V (F�
2) such that ϕ(a1) = z1 and ϕ(a2) = z2, where z1 and z2 are

generators of F
∗
2. Then the ∗-ideal ϕ(I) is generated by the relations

[[z1, z2], z1] = 0, [[z1, z2], z2] = 0.

So we have a ∗-isomorphism of A� and the ∗-algebra

C〈 z1, z2 | z∗1 = z1, z
∗
2 = z2, [[z1, z2], z1] = 0, [[z1, z2], z2] = 0 〉.

[1] Ostrovsky̆ı V.L. and Samŏılenko Yu.S., Introduction to the theory of representations of finitely presented
∗-algebras. I. Representations by bounded operators, Rev. Math. and Math. Phys., 1999, V.11, 1–261.


