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Five multi-parameter families of Hermitian exactly solvable matrix Schrödinger operators
in one variable was constructed.

1 Introduction

One of the principal aims of the present paper is developing a systematic algebraic procedure
for constructing exactly solvable (ES) Hermitian matrix Schrödinger operators

Ĥ[x] = ∂2
x + V (x). (1)

Here V (x) is an 2×2 matrix whose entries are smooth complex-valued functions of x. Hereafter
we denote d/dx as ∂x.

The well-known procedure of constructing a ES matrix (scalar) model is based on the concept
of a Lie-algebraic Hamiltonian [1, 2] (the Turbiner–Shifman approach). We call a second-order
operator in one variable Lie-algebraic if the following requirements are met:

• the Hamiltonian is a quadratic form with constant coefficients of first-order operators
Q1, Q2, . . . , Qn forming a Lie algebra g;

• the Lie algebra g has a finite-dimensional invariant subspace I of the whole representation
space.

Now if a given Hamiltonian H[x] is Lie-algebraic, then after being restricted to the space I
it becomes a matrix operator H whose eigenvalues and eigenvectors are computed in a purely
algebraic way. This means that the Hamiltonian H[x] is exactly solvable.

In the paper [3] we have extended the Turbiner–Shifman approach to the construction of
quasi-exactly solvable (QES) models on line for the case of matrix Hamiltonians. In this paper
we suggested the method for construction of exactly solvable matrix models, which based on the
idea explained in [3]. Let us remind, the method consists in supplementing a set of operators
Q1, Q2, . . . , Qn, forming a representation of some algebra, so that the obtained set of operators
left an appropriate subspace I invariant. However, there is a difference between the approaches
suggested in this paper and in [3]. Namely, the obtained set of operators does not form a Lie
algebra, in contrast to a set found in [3].

So, let us realize this method considering the set of the operators

Q1 = A, Q2 = Be−x, Q3 = cx(∂x + C), Q4 = ∂x, (2)

which form the representation of the algebra L2
4,8, found in [4]. Here A = B =

(
0 1
0 0

)
,

C =
(

c 0
0 c

)
.

The operators (2) belong to the class L of matrix differential operators of the form

L = {Q : Q = a(x)∂x + A(x)} , (3)
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where a(x) is a smooth real-valued function and A(x) is an 2×2 matrix whose entries are smooth
complex-valued functions of x.

The corresponding finite-dimensional invariant space has the form

G = 〈e−cx�e1, e
−(c+1)x�e1, . . . , e

−(c+k+1)x�e1〉 ⊕ 〈e−cx�e2, e
−(c+1)x�e2, . . . , e

−(c+k)x�e2〉, (4)

where k is an arbitrary natural number.
It is easy to verify that all operators from the class (3) and acting in the space (4), are

R1 = S0, R2 = S+ex∂x, R3 = S+∂x, R4 = S0e
x∂x,

R5 = S0∂x, R6 = S+e−x∂x, R7 = S−ex∂x, (5)

where S0 = σ3/2, S± = (iσ2 ± σ1)/2, σk are the 2 × 2 Pauli matrices.
Then we construct a Hamiltonian H[x] of the form

H[x] = ξ(x)∂2
x + B(x)∂x + C(x), (6)

which can be obtained by using of all bilinear combinations of operators belonging to the linear
span of the operators (2), (5).

Here we omitted a very cumbersome calculation and some technical methods to reduce an
operator (6) to a standard Schrödinger operator

Ĥ[y] = ∂2
y + V (y). (7)

We give below the final results, namely, the restrictions on the choice of parameters and the
explicit forms of the QES Hermitian Schrödinger operators (7). In the formulae below we denote
the conjunction of two statements A and B as [A]

∨
[B].

Let complex-valued parameters β̃ = (β1, iβ2, β3), δ̃ = (δ1, iδ2, δ3) and others satisfy the
following conditions[

β̃
2

< 0, ε �= 0, β1 �= β2

]
∧ [{α0, α1, α2, λ, γ0, β0, ε(β1 − β2), δ1(β1 − β2) + β3δ3, δ3} ⊂ R]

∧
[
µ = α0 = α2λ − β0 + 2α2

β̃δ̃

β̃
2 = −γ0λ + 2α1

β̃ε̃

β̃
2

= α1λ − β0λ − γ0 + 2α1
β̃δ̃

β̃
2 + 2α2

β̃ε̃

β̃
2 = 0

]
.

Then, the following Schrödinger operator be hermitian:

Ĥ[y] = ∂2
y +

1
16 (α2e2x + α1ex)

[(
α2

1 + 8α2γ0 − 4β2
0 − 4β̃

2
)

e2x

+
(
8α1γ0 − 8γ0β0 − 8λβ̃2

)
ex − 4

(
λ2β̃2 + γ2

0

)]

+


P cos

(
θ(x)

√
−β̃

2
+ Ω

)
+

ε(β1 − β2)√
−β̃

2
e−x cos

(
θ(x)

√
−β̃

2
)

 σ1

+


P sin

(
θ(x)

√
−β̃

2
+ Ω

)
+

ε(β1 − β2)√
−β̃

2
e−x sin

(
θ(x)

√
−β̃

2
)

 σ3

∣∣∣∣∣∣
x=z−1(y)

, (8)

here

P =

√√√√δ2
3 − (β̃δ̃)2

β̃
2 , cos Ω =

β̃δ̃

P

√
−β̃

2
, sin Ω =

δ3

P
, θ(x) = −

∫
ex + λ

α0 + α1ex + α2e2x
dx.
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We denote the function z−1(y) as the inverse of the function

y = z(x) ≡
∫

dx√
α2x2 + α1x + α0

. (9)

Furthermore, the basis elements of the corresponding transformed invariant space take the form

G = 〈Λ−1e−cz−1(y)�e1, Λ−1e−(c+1)z−1(y)�e1, . . . ,Λ−1e−(c+k+1)z−1(y)�e1〉
⊕ 〈Λ−1e−cz−1(y)�e2, Λ−1e−(c+1)z−1(y)�e2, . . . ,Λ−1e−(c+k)z−1(y)�e2〉,

where the constant matrix

Λ = Λ1 · Λ2 = exp
(

β3

2β̃ε̃
ε̃σ

)
· exp(νσ3), e2ν =

√
−β̃

2

β1 − β2
.

We give the particular example of a Hermitian model which has the important property.
Namely, a corresponding invariant space is a Hilbert one. That is, one can define a scalar
product

〈f1(y), f2(y)〉 =
∫

�f1(y)†f2(y)dy,

where �f1(y)† is a Hermitian conjugation of the vector f1(y). Let us put in the formula (8)
α2 = β2 = δ3 = γ0 = 1, ε = 1

2 , and the rest coefficients are equal zero. Then we have the
following Hamiltonian

Ĥ(y) = ∂2
y −

(
sin y +

1
2
y cos y

)
σ1 +

(
cos y − 1

2
y sin y

)
σ3 +

3
4
.

The corresponding invariant space for this operator G has (2k + 3)-dimension and is generated
by the vectors

�fj = ie−y2/4yj exp
(−iσ2

2
y

)
�e1, �gs = −ie−y2/4ys exp

(−iσ2

2
y

)
�e2,

where j = 0, . . . , k + 1, s = 0, . . . , k, �e1 = (1, 0)T , �e2 = (0, 1)T , σi (i = 1, 2, 3) are 2 × 2 Pauli
matrices.
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