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We find the complete set of local generalized symmetries (including x, t-dependent ones) for
the Calogero–Degasperis–Ibragimov–Shabat (CDIS) equation, and investigate the properties
of these symmetries.

1 Introduction

All known today integrable scalar (1+1)-dimensional evolution equations with time-independent
coefficients possess infinite-dimensional Abelian algebras of time-independent higher order sym-
metries (see e.g. [1, 2]). However, the equations of this kind usually do not have local time-
dependent higher order symmetries. The only known exceptions from this rule seem to occur [3]
for linearizable equations like e.g. the Burgers equation, for which the complete set of symmetries
was found in [4]. In the present paper we confirm this for a third order linearizable equation (4),
which is referred below as Calogero–Degasperis–Ibragimov–Shabat equation, and exhibit the
complete set of its time-dependent local generalized symmetries. This equation was discove-
red by Calogero and Degasperis [5] and studied, among others, by Ibragimov and Shabat [6],
Svinolupov and Sokolov [7], Sokolov and Shabat [8], Calogero [9], and by Sanders and Wang [10].

The paper is organized as follows. In Section 2 we recall some well known definitions and
results on the symmetries of evolution equations. In Section 3 we present the main result –
Theorem 1, giving the complete description of the set of all local generalized symmetries for
CDIS equation.

2 Basic definitions and known results

Consider a (1 + 1)-dimensional evolution equation

∂u/∂t = F (x, u, u1, . . . , un), n ≥ 2, ∂F/∂un �= 0, (1)

for a scalar function u, where ul = ∂lu/∂xl, l = 0, 1, 2, . . . , u0 ≡ u, and its (local) generalized
symmetries [1], i.e. the generalized vector fields G = G ∂/∂u, where G = G(x, t, u, u1, . . . , uk),
k ∈ N, is such that the evolution equation ∂u/∂τ = G is compatible with (1). Below we shall
identify the symmetry G = G ∂/∂u with its characteristics G.

Recall [2, 12] that for any function H = H(x, t, u, u1, . . . , uq) the greatest m such that
∂H/∂um �= 0 is called its order and is denoted as m = ordH. We assume that ordH = 0 for any
H = H(x, t). A function f of x, t, u, u1, . . . is called local (cf. [11, 15]), if it has a finite order.
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Denote by S
(k)
F the space of local generalized symmetries of (1) that are of order not higher

than k. Let also

SF =
∞⋃

j=0

S
(j)
F , ΘF = {H(x, t) | H(x, t) ∈ SF }, StF = {G ∈ SF | ∂G/∂t = 0},

SF,k = S
(k)
F /S

(k−1)
F for k ∈ N; SF,0 = S

(0)
F /ΘF .

The set SF is a Lie algebra with respect to the Lie bracket (see e.g. [1, 15])

[H, R] = R∗(H) − H∗(R) = ∇H(R) −∇R(H).

Here for any local Q we set

Q∗ =
ord Q∑
i=0

∂Q

∂ui
Di, ∇Q =

∞∑
i=0

Di(Q)
∂

∂ui
,

and D = ∂/∂x +
∞∑
i=0

ui+1∂/∂ui is the total derivative with respect to x.

Note (see e.g. [1]) that a local function G is a symmetry of (1) if and only if

∂G/∂t = −[F, G]. (2)

Equation (2) implies [1, 11]

∂G∗/∂t ≡ (∂G/∂t)∗ = ∇G(F∗) −∇F (G∗) + [F∗, G∗], (3)

where ∇F (G∗) ≡
ord G∑
j=0

∇F

(
∂G
∂uj

)
Dj and likewise for ∇G(F∗); [· , ·] stands for the usual commu-

tator of linear differential operators.
Consider also (see e.g. [2, 11, 12] for more information) the set FS of formal series in powers

of D, i.e., the expressions of the form H =
m∑

j=−∞
hjD

j , where hj are local functions. The grea-

test k such that hk �= 0 is called the degree of H ∈ FS and is denoted by deg H. Recall that R ∈
FS is called a formal symmetry of infinite rank for (1), if it satisfies the relation (see e.g. [2, 12])

∂R/∂t + ∇F (R) − [F∗, R] = 0.

3 Symmetries of the CDIS equation

The Calogero–Degasperis–Ibragimov–Shabat (CDIS) equation has the form [5, 6]

ut = u3 + 3u2u2 + 9uu2
1 + 3u4u1. (4)

Let us mention that this is the only third order (1+1)-dimensional scalar polynomial λ-homoge-
neous evolution equation of the form ut = un + f(u, u1, . . . , un−1) with λ = 1/2 which possesses
infinitely many x, t-independent local generalized symmetries [13]. This equation is linearized
into vt = v3 upon setting v = exp(ω)u, where ω = D−1(u2) [8]. It appears to possess only one
local conserved density ρ = u2 (see e.g. [7, 8] and references therein), but it has a Hamiltonian op-
erator and infinitely many conserved densities explicitly dependent on the nonlocal variable ω [7].

In order to refer to the sets of symmetries of the CDIS equation, we shall use the sub-
script ‘CDIS’ instead of F , i.e., SCDIS will denote the Lie algebra of all generalized symmetries
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of (4), etc. From now on F will stand for the right-hand side of the CDIS equation, that is,
u3 + 3u2u2 + 9uu2

1 + 3u4u1.
Let G be a local generalized symmetry of order k ≥ 1 for (4). Equating to zero the coefficient

at Dk+2 in (3) and solving the arising equation, we obtain (see e.g. [1]) that

∂G/∂uk = ck(t), (5)

where ck(t) is a function of t.
Below we assume without loss of generality that any symmetry G ∈ SCDIS,k, k ≥ 1, vanishes

if the relevant function ck(t) is identically equal to zero.
Equating to zero the coefficients at Dk+1 and Dk in (3), we see that for k ≥ 3 we have

∂2G/∂x∂uk−1 = 0 and

∂2G/∂x∂uk−2 = ċk(t)/3. (6)

Repeatedly using (6) and taking into account that G ∈ SCDIS implies G̃ = ∂rG/∂xr ∈ SCDIS,
we find that ord G̃ ≤ k − 2r and

∂G̃/∂uk−2r = (1/3)rdrck(t)/dtr. (7)

For r = [k/2] we have ord G̃ ≤ 1. As u1 is the only generalized symmetry of CDIS equation from
S

(1)
CDIS, and u1 is time-independent, we see that ck(t) satisfies the equation dmck(t)/dtm = 0 for

m = [k/2] + 1. Therefore, dimSCDIS,k ≤ [k/2] + 1 for k ≥ 1.
As all symmetries from S

(2)
CDIS are exhausted by u1, by Theorem 2 of [17] all generalized

symmetries of the CDIS equation are polynomial in time t.
Now let us turn to the study of time-independent symmetries of CDIS equation. This equation

has infinitely many x, t-independent generalized symmetries, hence [18] a formal symmetry of

infinite rank of the form L = D+
∞∑

j=0
ajD

−j , where aj are some x, t-independent local functions.

Since we have deg∇G(F∗) ≤ 2 for any G, by (3) and Lemma 9 from [15] for any G ∈ StCDIS,

k = ordG ≥ 2, we can represent G∗ in the form G∗ =
k∑

j=1
αjL

j +B, where αj are some constants

and B is some formal series with time-independent coefficients, deg B < 1. We have ∂L/∂x = 0,
so ∂G∗/∂x = ∂B/∂x and deg ∂G∗/∂x < 1.

Thus, any symmetry G ∈ StCDIS, k ≡ ordG ≥ 2, can be represented in the form

G = G0(u, . . . , uk) + Y (x, u). (8)

It is obvious that ∂Y/∂x = ∂G/∂x ∈ StCDIS and ord ∂Y/∂x = 0. But the CDIS equation
has no generalized symmetries of order zero, so ∂Y/∂x = 0, and thus any time-independent
symmetry G of order k ≥ 2 for CDIS equation is x-independent as well. The straightforward
computation shows that the same statement holds true for the symmetries of order lower than 2.
Using the symbolic method, it is possible to show [13] that CDIS equation has no even order t, x-
independent symmetries. Hence, it has no even order time-independent generalized symmetries
at all.

Now let us show that the same is true for time-dependent generalized symmetries as well.
Recall that the CDIS equation is invariant under the scaling symmetry K = 3tF + xu1 + u/2.
Hence, if a symmetry Q contains the terms of weight γ (with respect to the weighting induced
by K, cf. [13, 14]), there exists a homogeneous symmetry Q̃ of the same weight γ. We shall
write this as wt(Q̃) = γ. Note that we have [K, Q̃] = (γ − 1/2)Q̃.

If G ∈ SCDIS,k, k ≥ 1, is a polynomial in t of degree m, then its leading coefficient ∂G/∂uk =

ck(t) also is a polynomial in t of degree m′ ≤ m, i.e., ck(t) =
m′∑
j=0

tjck,j , where ck,m′ �= 0.
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Consider G̃ = ∂m′
G/∂tm

′ ∈ S
(k)
CDIS. We have ∂G̃/∂uk = const �= 0, hence G̃ contains the terms

of the weight k + 1/2. Let P be the sum of all terms of weight k + 1/2 in G̃. Clearly, P is
a homogeneous symmetry of weight k+1/2 by construction, ordP = k and ∂P/∂uk is a nonzero
constant. Next, ∂P/∂t = −[F, P ] ∈ SCDIS, and the symmetry ∂P/∂t is homogeneous of weight
k+7/2. Obviously, ord ∂P/∂t ≤ k−1. By the above, all symmetries in SCDIS are polynomial in t,
and thus for any homogeneous B ∈ SCDIS, b ≡ ordB ≥ 1, we have ∂B/∂ub = trcb, cb = const
for some r ≥ 0. Hence, wt(B) = b − 3r + 1/2 ≤ b + 1/2, and thus for k ≥ 1 the set SCDIS

does not contain homogeneous symmetries B such that wt(B) = k + 7/2 and ordB ≤ k − 1, so
∂P/∂t = 0.

Taking into account the absence of generalized symmeries of order zero for CDIS equation, we
conclude that existence of a time-independent generalized symmetry of order k ≥ 1 is a necessary
condition for the existence of a polynomial-in-time symmetry G ∈ SCDIS of the same order.
Moreover, by the above all symmetries from SCDIS are polynomial in t. Hence, the absence of
time-independent local generalized symmetries of even order for the CDIS equation immediately
implies the absence of any time-dependent local generalized symmetries of even order.

Thus, we have shown that the CDIS equation has no (local) generalized symmetries of even
order and that for any k ≥ 1 dimSCDIS,k ≤ [k/2] + 1. Therefore, if for all odd k = 2l + 1 we
exhibit l+1 symmetries of order k, then these symmetries will span the whole Lie algebra SCDIS

of (local) generalized symmetries for the CDIS equation.
The symmetries in question can be constructed in the following way.
Let τm,0 = xmu1 + mxm−1u/2, m = 0, 1, 2 . . . , and τ1,1 = x(u3 + 3u2u2 + 9uu2

1 + 3u4u1) +
3u2/2 + 5u1u

2 + u5/2. Note that τ1,1 is the first nontrivial master symmetry for the CDIS
equation [10, 13]. It is easy to check that in accordance with Theorem 3.18 from [16] we have

[τm,j , τm′,j′ ] = ((2j′ + 1)m − (2j + 1)m′)τm+m′−1,j+j′ , (9)

where τm,j with j > 0 are defined inductively by means of (9), i.e. [16] τ0,j+1 = 1
2j+1 [τ1,1, τ0,j ],

τm+1,j = 1
2+4j−m [τ2,0, τm,j ].

Thus, the CDIS equation, as well as the Burgers equation, represents a nontrivial example of
a (1+1)-dimensional evolution equation possessing a hereditary algebra (9).

Using (9), it can be shown (cf. [16]) that adm+1
τ0,j

(τm,j′) = 0, i.e. τm,j′ are master symmetries
of degree m for all equations utj = τ0,j , j = 0, 1, 2, . . . . Here adB(G) ≡ [B, G] for any (smooth)
local functions B and G.

Let exp(adB) ≡
∞∑

j=0
adj

B /j!. As adm+1
τ0,j

(τm,j′) = 0, it is easy to see (cf. [16]) that

G
(k)
m,j(tk) = exp(−tk adτ0,k

)τm,j =
m∑

i=0

(−tk)i

i!
adi

τ0,k
(τm,j) =

m∑
i=0

((2k + 1)tk)im!
i!(m − i)!

τm−i,j+ik

are time-dependent symmetries for the equation utk = τ0,k and ordG
(k)
m,j = 2(j + mk) + 1. Note

that G
(k)
m,j obey the same commutation relations as τm,j , that is

[G(k)
m,j , G

(k)
m′,j′ ] = ((2j′ + 1)m − (2j + 1)m′)G(k)

m+m′−1,j+j′ . (10)

It is straightforward to verify that τ0,1 = F = u3 + 3u2u2 + 9uu2
1 + 3u4u1 and thus Gm,j ≡

G
(1)
m,j(t) = exp(−t adF )τm,j are time-dependent symmetries for the CDIS equation.
It is easy to see that the number of symmetries Gm,j of given odd order k = 2l + 1 equals

[k/2]+1 = l+1. As dimSCDIS,k ≤ [k/2]+1, these symmetries exhaust the space SCDIS,k. Thus,
we have proved the following theorem.
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Theorem 1. Any local generalized symmetry of the CDIS equation is a linear combination of
the symmetries Gm,j for m = 0, 1, · · · and j = 0, 1, 2 . . . .

Note that the technique of [10], based on the representation theory for the algebra sl(2) gener-
ated by τ0,0 = u1, 2τ1,0 = 2xu1 +u and τ2,0 = x2u1 +xu, enables one to obtain only a part of the
symmetries, described in the above theorem. The reason for this is that 〈τ0,0, τ1,0, τ2,0〉 is a sub-
algebra of the algebra generated by τm,0, m = 0, 1, . . . . This is exactly the same phenomenon as
in the case of Lie algebra of vector fields of the form xm+1 d

dx .
As a final remark, let us mention that, in complete analogy with the above, we can readily

obtain the complete description of the set of local generalized symmetries for any of the equations
utk = τ0,k, k = 2, 3, . . . . In this way we arrive at the following generalization of Theorem 1.

Theorem 2. Any local generalized symmetry of the equation utk = τ0,k, k ∈ N, is a linear
combination of the symmetries G

(k)
m,j(tk) for m = 0, 1, . . . and j = 0, 1, 2 . . . .
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[6] Ibragimov N.H. and Shabat A.B., Infinite Lie–Bäcklund algebras, Funct. Anal. Appl., 1981, V.14, 313–315.

[7] Svinolupov S.I. and Sokolov V.V., On conservation laws for equations having a non-trivial Lie–Bäcklund
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