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We are changing Einstein’s axiom system for special relativity and propose a new funda-
mental theory in relativistic physics. We do not assume that all inertial coordinate systems
are equivalent (Einstein’s first postulate), but we keep the second axiom, that the speed of
light c is the same in all inertial frames. Some key results are [7]:
- The limiting energy and momentum of any particle as its speed approaches the speed of
light, are finite and proportional to its rest mass.
- These upper bounds give the minimum lengths and time intervals of a particle in the sense
of uncertainty and the ultraviolet cutoffs in the renormalization in quantum field theories.
- Photons, and all other particles moving at the speed of light have nonzero rest mass. They,
however, obey the corresponding (modified) equations with vanishing mass terms.
We prove results of the new theory which can give answers and solutions to the following
problems and difficulties in modern physics: Divergence difficulties in quantum field theories,
“zero over zero” operations in momenta-energy calculations, failure in finding Higgs particles
in gauge theories, singularities in general relativity.

1 Introduction

In modern physics, there exist some problems and difficulties:
(1) Singularities in general relativity. “. . . it is my opinion that singularities must be ex-

cluded” (Einstein [4, p. 164]). And because of this, he underlines that “One may not therefore
assume the validity of the equations for very high density of field and of matter . . . ” (Einstein
[4, p. 129]).

(2) Divergence difficulties in quantum field theories, which, “. . . are symptomatic of a chronic
disorder in the small-distance behavior of the theory” (Bjorken and Drell [2, p. 4]), and “In any
case the existence of divergent quantities leads one to suspect trouble in the theory at large
momenta or, equivalently, small distances” (Bjorken and Drell [1, p. 154]). Because of the irra-
tional calculation, ∞−∞, in renormalizations, Dirac, a founder of renormalizations, repeatedly
asserted [3] that fundamental physics, relativity and quantum theory, must be reformed.

(3) The finite momenta-energies of particles moving at speed of light are given by the opera-
tion “zero over zero”. For example, the finite energies of photons are given by

E = hν =
0√

1 − c2/c2
c2 =

0
0

c2

which can be of any value for ν can be of any value.
(4) The inconsistency of gauge invariances for short range interactions with nonzero rest

masses of the corresponding gauge particles. The Higgs mechanism seems to be helpful in trying
to reach consistency, but there is no experimental evidence which indicates the existence of Higgs
particles. Moreover, too many parameters caused by the mechanism make the theory look like
a phenomenological rather than a basic theory, as T.D. Lee [5] pointed out. S. Weinberg [8] as the
first person who used the Higgs mechanism to establish a unified gauge theory for electromagnetic
and weak interactions, proposed a model without the Higgs mechanism in 1981, several years
after he won the Nobel prize for that work. Some physicists believe that they will be able to
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find Higgs particles in the superconducting super collider. But Weinberg [9], speaking of the
proposed SSC accelerator, says “I refuse to believe that fundamental physics will stop at that
point . . .We do not know these underlying laws . . .We may never know the ultimate laws of
nature”.

In this paper, we will change Einstein’s axiom system and propose a new fundamental physics
based on a new axiom structure. Einstein’s theory of relativity is based in its entirety on two
postulates [4]:

P1: The laws of physics take the same form in all inertial frames.
P2: The speed of light c is the same in all inertial frames.
From these two postulates Einstein derived that the laws of motion are invariant under

Lorentz transformations, in particular

dS′2 = dS2 for any inertial frames S, S′, and dx′µ = αµ
νdxν ,

where αµ
ν are the matrix elements of the Lorentz transformation from S to S′. Einstein pointed

out [4, p. 35] that assuming only P2 one can allow more general transformations than Lorentz
transformations of the form dS′2 = λ(v)dS2, where λ(v) is a function of the relative velocity v
of the inertial frames. If in addition one assumes P1 he showed that λ(v) = const = 1. In other
words the Lorentz transformations are a necessary result of Einstein’s axioms P1 and P2.

In this paper we study the consequences if we abandon the first postulate P1 but keep the
second postulate P2. We do not assume that two inertial coordinate systems are still “equivalent”
when their relative velocity is high enough, and we allow the limiting deviations (as V → c)
of the new theory from the current one to be large enough. This will lead us to more general
linear transformations which leave the speed of light invariant and the new equations of laws of
physics will be invariant under these transformations, called c-invariant transformations. We
will derive the corresponding c-invariant equations of particle mechanics, the c-invariant Klein–
Gordon, Proca and Maxwell equations and their interactions. No matter whether the deviations
from the classical Einstein theory can be verified experimentally or not, we prove theoretical
results of the new theory which can give us answers and solutions to the problems and difficulties
mentioned above. For details we refer to [7].

2 c-invariant groups

We introduce a new type of general linear transformations leaving the speed of light invariant.
Their algebraic structure is not the one of a group but of a groupoid (see Section 3); we call it
a c-invariant group . In Section 3 we will discuss this algebraic structure. These transformations
will generalize the Lorenz transformations from the classical theory.

Let Σ be the set of all inertial coordinate system and set for S ∈ Σ

dS2 = dxµdxµ =
(
dx1

)2 +
(
dx2

)2 +
(
dx3

)2 − c2dt2. (1)

We are not considering dS as a distance element as in general geometrical models of flat
space-time but rather as a formal definition because the generalized transformations we will
consider will not be a symmetry of this dS2 but for a different quantity which will define our
geometry.

Consider the following coordinate transformations connecting two inertial coordinate systems
S, S′ ∈ Σ:

dx′µ = f
1/2
S (�VS′S)α(µν)(�VS′S)dxν ≡ Tµ

ν (S′S)dxν , (2)

where �VS′S is the velocity of S′ relative to S (measured in S) and fS(�VS′S) is a positive function,
called the transformation factor from S to S′, and α(µν)(�VS′S) are the matrix elements of the
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Lorentz transformation from S to S′ (we use the index notation α(µν) to indicate that α(µν) is not
covariant under the new transformations) and Tµ

ν (S′S) ≡ fS(�VS′S)α(µν)(�VS′S) are the matrix
elements of the corresponding more general linear transformation. In general the map fS might
depend on S, especially when the relative velocity of the coordinate systems is high enough.
Thus we have the transformation rule

dS′2 = fS(�VS′S)dS2, for all S, S′ ∈ Σ. (3)

These transformations leave the speed of light invariant; indeed let ui = dxi/dt, i = 1, 2, 3 be
the coordinate velocity in S then for u = c in S and u′ = c′ in S′ we have dS′2 = dx′µdx′µ =
(c′1dt′)2 + (c′2dt′)2 + (c′3dt′)2 − c2(dt′)2 =

(
c′2 − c2

)
(dt′)2 = fS(�VS′S)dS2 = fS(�VS′S)dxµdxµ = 0,

hence c′ = c.

Remark 1. These transformations are not conformal transformations, because dS2 and dS′2

are not two metrics; see Definition 1.

We now study the important properties of these new transformations Tµ
ν (S′S). For any

S, S′, S′′ ∈ Σ we have dS′′2 = fS′(�VS′′S′)dS′2 = fS′(�VS′′S′)fS(�VS′S)dS2 and dS′′2 = fS(�VS′′S)dS2,
hence

fS′(�VS′′S′)fS(�VS′S) = fS(�VS′′S). (4)

In particular, we get fS(�VS′S)fS′(�VSS′) = 1, (dS′2 = fS(�VS′S)dS2 = fS(�VS′S)fS′(�VSS′)dS′2)
which implies f−1

S (VS′S) = fS′(VSS′). For the matrix representation we find that they satisfy
the consistency condition

Tµ
σ (S′′S′)T σ

ν (S′S) = Tµ
ν (S′′S), for all S, S′, S′′ ∈ Σ, (5)

that means f
1/2
S′ (�VS′′S′)α(µσ)(�VS′′S′)f1/2

S (�VS′S)α(σν)(�VS′S) = f
1/2
S (�VS′′S)α(µν)(�VS′′S) for all S, S′,

S′′ ∈ Σ.
More abstractly we write the consistency condition (5) as

T (S′′S′)T (S′S) = T (S′′S), for all S, S′, S′′ ∈ Σ, (6)

whose algebraic meaning we will explain in Section 3.
Let S0 ∈ Σ be a fixed but arbitrary inertial frame, then for any S ∈ Σ,

dS2
0 = fS(�VS0S)δ(µν)dxµdxν

(the Kronecker symbol δ(µν) is not covariant under the general transformations). Define

σµν ≡ fS(�VS0S)δ(µν) (7)

then from straightforward calculations we have

Proposition 1. σµνdxµdxν is invariant under the transformations T (SS0) for all S ∈ Σ, i.e.

σµνdxµdxν = dS2
0 , for all S ∈ Σ. (8)

Definition 1. Let So be a fixed absolutely isotropic inertial frame, i.e. there exists a function
g such that fSo( �X) ≡ g(| �X|). We define the distance element by

dS2
o = fS(�VSoS)dS2 = fS(�VSoS)δ(µν)dxµdxv ≡ σµνdxµdxν , (9)

where σµν ≡ fS(�VSoS)δ(µv) is the metric tensor for general flat space-time. Note that Minkowski’s
space time is a special case with fS(�VSoS) ≡ 1 for all S ∈ Σ.
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The Lorentz transformations (both homogeneous and inhomogeneous) are special cases of
our more general transformations, namely those with transformation factors equal to 1.

The transformation factor in (3) depends on the velocity �VS′S between S and S′, so we
regard fS as a function on R

3 for any given inertial frame S ∈ Σ. We call fS the factor function
of S. More precisely, for S ∈ Σ let fS : R

3 → R+, fS(�V ) = fS(v1, v2, v3), �V = vi�ei, be a function
on R

3, where {�ei, i = 1, 2, 3} is the orthonormal basis of S. If for any S′ ∈ Σ, fS(�VS′S) =
fS(�V )|�V =�VS′S

, then fS is called the factor function of S, which gives the transformation factors
from S to all other inertial coordinate systems S′ ∈ Σ.

Theorem 1. If the factor function of one S ∈ Σ is given then the factor functions of all other
inertial coordinate systems S′ ∈ Σ are determined.

Proof. Let ⊕ denote the addition of velocity vectors. For any S, S′, S′′ ∈ Σ we have �VS′′S =
�VS′S ⊕ �VS′′S′ and the consistency condition becomes fS′(�VS′′S′) = fS(�VS′′S′⊕�VS′S)

fS(�VS′S)
. With �V ′ ≡

�VS′′S′ , we find fS′(�V ′) = fS(�V ′ ⊕ �VS′S)/fS(�VS′S), for all �V ′, 0 ≤ V ′ < c, and all S, S′ ∈ Σ. This
expresses the factor function fS′ of any S′ ∈ Σ in terms of the factor function fS of S. �

Let Vec = {�V ∈ R
3|0 ≤ V < c} and S ∈ Σ. We denote the set of all factor functions

generated by fS by

FS =

{
fS′ ∈ C(Vec, R+)|S′ ∈ Σ, fS′(�V ′) =

fS(�V ′ ⊕ �VS′S)

fS(�VS′S)
, for all �V ′ ∈ Vec

}
.

Proposition 2. For any S, S′ ∈ Σ with �VS′S �= 0 we have fS = fS′ if and only if fS(�V ) ≡ 1.

3 Algebraic structure of the transformations T (S′S)

Let R
4 = R×R×R×(icR) and let ε = {εα|α ∈ J} be the collection of all events, where J is some

index set. The event εα has coordinates Xα in the S frame: Xα ∈ R
4, Xα =

(
x1

α, x2
α, x3

α, x4
α

)
,

x4
α ≡ ictα. Denote X = {Xα ∈ R

4|α ∈ J} and let T (S′S) : X → X′ = {X ′
α ∈ R

4|α ∈ J}
be a mapping such that X ′

α = T (S′S)(Xα) for all α ∈ J . Then the consistency condition for
the set {T (S′S)|S, S′ ∈ Σ} is T (S′′S′)T (S′S) = T (S′′S), for all S, S′, S′′ ∈ Σ. With this (2)
becomes dX ′ = T (S′S)dX = f

1/2
S (�VS′S)α(�VS′S)dX where α(�VS′S) is the matrix for the Lorentz

transformation from S to S′. We call the matrix [Tµ
ν (S′S)] =

[
f

1/2
S (�VS′S)α(µν)(r�VS′S)

]
=[

f
1/2
S (�VS′S)α(�VS′S)

]
the matrix representation for the mapping T (S′S).

More abstractly we have the following algebraic situation: Let A be a collection of sets and
for any Aα, Aβ ∈ A let T (AαAβ) be a transformation from Aβ to Aα. Denote by TA the set of all
such transformations defined in A. The product of two such transformations T (AαAβ)T (AσAγ)
is only defined if Aβ = Aσ, in which case T (AαAβ)T (AβAγ) is called the physical product where
the two transformations are successive from Aγ to Aβ , then from Aβ to Aα.

Definition 2. A set of transformations TA is called a physical group if it is closed under the
physical product; in other words if the transformations satisfy the consistency condition

T (AαAβ)T (AβAγ) = T (AαAγ), for all Aα, Aβ , Aγ ∈ A. (10)

Proposition 3. A) For every α the set Tα ≡ {T (AαAβ)|Aβ ∈ A} ⊂ TA, has a left unit element
and for every β the set Tβ ≡ {T (AαAβ)|Aα ∈ A} has a right unit element.

B) For every element of a physical group there exist a right and a left inverse, which are
identical to each other.

C) The physical product is associative.
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Theorem 2. Let S ∈ Σ and fS be given. The set TS = {T (S′S′′) = f
1/2
S′′ (�VS′S′′)α(�VS′S′′) |

S′, S′′ ∈ Σ, fS′′ ∈ FS} (where α(�VS′S′′) is the matrix of the Lorentz transformation from S′′ to
S′) is a physical group, called a c-invariant group.

4 Model case of factor functions

We give an example of factor functions which shows how these ideas can be realised and which
can serve as a model. Let S0 ∈ Σ be a fixed inertial frame and fix a parameter N > 0. Define
fS0(�V ) = fS0(V ) ≡ (

1 − (V/c)N
)−1, V = |�V | < c. This factor function of S0 generates a

set FS0 =
{

fS(�V ) = fS0
(�V ⊕�VSS0

)

fS0
(�VSS0

)

∣∣∣ S ∈ Σ
}

, where fS0

(
�V ⊕ �VSS0

)
=

(
1 − BN

)−1 with B =

(
1 + �V · �VSS0/c2

)−1
[(

1 + �V · �VSS0/c2
)2 − (

1 − V 2
SS0

/c2
) (

1 − V 2/c2
)]1/2

.

The Lorentz model is nothing but the limiting case of this model as N → ∞.

5 Dynamics

Now let us derive the equations of fundamental laws of nongravitational physics which are
invariant under the c-invariant groups. We call these equations c-invariant. We will see that
the transformation factors will appear in these equations. When we let all the transformation
factors be 1, then all the equations will go back to their counter-parts in the Lorentz invariant
theory. When we take some c-invariant groups with transformation factors having the same
limiting behavior, some important theoretical results will be obtained.

5.1 c-invariant classical mechanics

Let S∗ be the instantaneous rest frame of a particle and let �u = �VS∗S be the instantaneous
velocity of the particle measured in the S-frame. The interval of proper time is

dτ =
√

−dS∗2/c2 =
[
−fS(�VSΣ)dS2/c2

]1/2
= f

1/2
S (�u)γ−1dt, where γ ≡ 1√

1 − u2/c2

is called the Lorentz factor. Define the 4-velocity Uµ ≡ dxµ /dτ = f−1/2(�u)γdxµ /dt and the
4-momentum Pµ ≡ moUµ.

The particle mechanics invariant under the c-invariant groups is

Fµ = mo
dUµ

dτ
=

dPµ

dτ
, (11)

where mo is the rest mass of the particle and Fµ is the 4-force determined by electromagnetical
and gravitational fields through the corresponding formula. Denote �P = (P 1, P 2, P 3) and
P 4 = iE/c, then �P = mof

−1/2
S (�u)γ�u and with λ ≡ f

−1/2
S (�u)

E = mof
−1/2
S (�u)γc2 = moλγc2. (12)

Thus, PµPµ = P 2 − E2/c2 = −m2
oc

2f−1
S (�u), and hence E2 = P 2c2 + m2

oc
4f−1

S (�u).

5.2 c-invariant quantum mechanics

The de Broglie wave of a free particle is

ψ = A exp(i�−1Λ−1Pµxµ) (13)
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where the transformation property of A is determined by the spin of the particle and Λ is
defined as Λ ≡ fS0(�VSS0) with S0 being a fixed absolutely isotropic inertial frame, (i.e. there
exists a function g such that fSo( �X) = g(|X|)). The phase is invariant under c-invariant groups;
indeed Λ−1Pµxµ = fS(�VS0S)Pµxµ = fS(�VS0S)δ(µν)P

µxν = σµνP
µxν , where Λ−1 ≡ f−1

S0
(�VSS0) =

fS(�VS0S).
Generally, we have

Theorem 3. Let Aµ and Bµ be a contravariant and a covariant 4-vector under c-invariant
groups respectively. Then Λ−1Aµ and ΛBµ are covariant and contravariant 4-vectors under
c-invariant groups respectively.

Proposition 4. The c-invariant Klein–Gordon equation for free spin zero particles in the obser-
ver-frame S is

(
� − c2

�
−2m2

)
ψ = 0, where � = ∂µ∂µ, with ∂µ ≡ Λ∂µ (14)

and

m ≡ moλΛ−1/2, with λ ≡ f
−1/2
S (�u), and Λ ≡ fS0(�VS0S). (15)

We call m the apparent mass of the particle in S.

Proof. For any free particle with spin zero, we have ψ = A exp
(
i�−1Λ−1Pµxµ

)
, where A is

a scalar. It is clear that ψ obeys (14) for one can easily check

�ψ = Λ
(
i�−1Λ−1

)2
PµPµψ = �

−2m2
0c

2λ2Λ−1ψ = m2c2
�
−2ψ (16)

which holds for any S ∈ Σ since Λ−1Pµxµ is an invariant and A is a scalar. �

Moreover, we have

Theorem 4. The apparent mass m is an invariant under c-invariant groups, i.e. m′ = m.

Proof. This is true simply because

m = moλΛ−1/2mof
−1/2
S (�u)f−1/2

S0
(�VSS0) = mof

−1/2
S0

(�VS∗So),

which is independent of the choices of the observer-frame S. �

For the Lorentz group we have λ = 1 and Λ = 1 for all S ∈ Σ, hence m = mo and the
c-invariant Klein–Gordon equation goes back to the Lorentz invariant Klein–Gordon equation.

Proposition 5. The c-invariant Proca equation for free particles with spin 1 is

(
� − c2

�
−2m2

)
ψµ = 0, where ψµ = Aµ exp

(
i�−1Λ−1Pµxµ

)
(17)

with Aµ being a 4-vector.

We see that moλ instead of mo appears in c-invariant equations of law of motion, Klein–
Gordon and Proca equations (later we will see also in the c-invariant Dirac equation), where
λ = f

−1/2
S (�u) = f

−1/2
S (�VS∗S) and S∗ is the instantaneous rest frame of the particle.



Relativity without the First Postulate 583

5.3 Limit u → c

Now we consider the limit as u → c, i.e. write �c = c�n (|�n| = 1) and let

NS(�n) ≡ lim
�u→c�n

λγ, λ ≡ f
−1/2
S (�u). (18)

Our fundamental assumption is the following: There exists an inertial frame S ∈ Σ, such
that

NS(�n) ≡ lim
�u→c�n

λγ ≡ lim
�u→c�n

f
−1/2
S (�u)γ < ∞. (19)

Under this assumption we have the Theorems 5, 6, 7 and the Results 1, 2, 3.

Theorem 5. If NS(�n) < ∞ for all �n with |�n| = 1 for some S ∈ Σ, then NS′(�n′) = lim
�u′→c�n′

λ′γ′ <

∞ for all �n′ with |�n′| = 1, for all S′ ∈ Σ, where λ′ = f
−1/2
S′ (�u′) and γ′ =

(
1 − u′2/c2

)−1/2
.

Theorem 6. Let S ∈ Σ and denote ΣS = {S′ ∈ Σ|VS′S = 0}. Then whenever there exists an
So ∈ Σ such that fSo is isotropic, then fS′

o
is isotropic for each S′

o ∈ ΣSo and fS is not isotropic
for each S ∈ Σ \ ΣSo.

In case NS(�n) < ∞ for all �n with |�n| = 1 and all S ∈ Σ, we get the following results:

Result 1. The contravariant ultraviolet cut-offs are

Λµ(�n) ≡ lim
�u→c�n

Pµ = mocNS(�n)(�n, i),

where we use the notion Aµ = (�a, b) to indicate that Ai = ai, i = 1, 2, 3 and b = A4.
We assume that there exists an So ∈ Σ such that fSo is isotropic. Then in case λγ is bounded

the upper bound of the 4-momentum for a particle observed in any S ∈ Σ exists, and at least
in case λγ is nondecreasing, it is given by

Λµ ≡ max
�n ∈ R

3

|�n| = 1

Λµ(�n) = f
1/2
So

(�VSSo)

√
1 − V 2

SSo
/c2

1 − VSSo/c
N0

which gives the minimum nonzero lengths and time-intervals for particles in the sense of un-
certainty, indicating a true meaning of “discrete” or “quantized” space-time and of any model
for non-pointlike elementary particles, e.g. strings. Furthermore, photons and all the particles
moving at speed c must have nonzero rest masses which are given by a l’Hospital type limit. For
example, consider a photon with energy E in S ∈ Σ which moves along the direction �n. Then
its nonzero rest mass is

mo =
Ec2

lim
�u→c�n

λγ
=

Ec2

NS(�n)
�= 0.

In Einstein’s relativity, λ ≡ 1, NS(�n) = ∞ and E = hν, hence mo = 0 while E = hν =
0c2/

√
1 − c2/c2 = 0c2/0 can be of any value for ν can be of any value. There is no limit process

as there is in our theory.
In case NS(�n) < ∞ for all �n and all S ∈ Σ, for photons, E = Λhν (we will show this later),

which can be given by (12) through a l’Hospital-type limit process:

E = Λhν = moc
2 lim

�u→c�n
λγ = moc

2NS(�n),
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where mo = c−2(NS(�n))−1Λhν is the nonzero rest mass of the photons with frequency ν and
moving along the unit direction �n. It is impossible to make photons and any particles moving
with speed c be at rest. Hence, the so-called “rest mass” of a particle moving with speed c is
just a coefficient of proportionality between NS(�n) and the energy of the particle measured in
the S frame, and is independent of S for it is a scalar under c-invariant groups but dependent
on both its energy and direction of motion.

Result 2. Since γ → ∞ as u → c, our assumption NS(�n) < ∞ leads to

lim
u→c

λ ≡ lim
u→c

f
−1/2
S (�u) = 0 for all S ∈ Σ. (20)

Thus, every scalar or vector particle moving at speed c has zero apparent mass, i.e., m ≡
moλΛ−1/2 = 0. Then they obey the corresponding equations with vanishing mass terms by
which the gauge invariances are characterized.

5.4 c-invariant classical electrodynamics

We can now study the equations of classical electrodynamics. The c-invariant classical electro-
dynamics is given by

∂µFµν
em = −4πc−1Jν and fµ

em = c−1Fµν
emJν , (21)

where

Fµν
em ≡ ∂µAν − ∂νAµ = Λ2(∂µAν − ∂νAµ) ≡ Λ2F em

µν

and Jµ = Λ−1Jµ, Jµ ≡ ρ∗Uµ with ρ∗ ≡ dq∗/dV ∗, where dq∗, dV ∗ and ρ∗ are charge element,
volume element and charge density measured in S∗ ∈ Σ (the instantaneous rest frame of the
charged particle). We call ρ∗ the proper charge density which is frame-invariant as the proper
time interval. We keep the assumption that charges are frame-invariant. Then dq∗ = dq and
ρ∗ = dq/dV ∗. The kinematic effects of moving rods under c-invariant groups give dV ∗ =
(f1/2

S (�VS∗S))3γdV = λ−3γdV . Hence ρ∗ = λ3γ−1ρ. Now denote Aµ ≡ ( �A, iφ) which means
�A ≡ (A1, A2, A3), iφ ≡ A4 and �E ≡ −∇φ − c−1∂ �A/∂t, �B ≡ ∇× �A.

Then it is easy to check that (21) leads to

Proposition 6. The c-invariant Maxwell equations are:

∇ · �B = 0,

∇× �E = −c−1∂ �B/∂t,

∇ · �E = 4πρ,

∇× �B = c−1∂ �E/∂t + 4πc−1 �J, (22)

where ρ = Λ−1λγρ∗ = Λ−1λ4ρ, and �J ≡ ρ�u.

Also (21) leads to a Lorentz-type force

F em
(µ) = q( �E + �β × �B, i �E · �β), �β ≡ �u/c, (23)

where

F em
(µ) ≡ dτ

dt
Fµ

em ≡ λ−1γ−1

∫
fµ

emdV ∗.

Without difficulty, we obtain F space
(µ) = moc(1 + �AS · �β)−1 dλ

dt γ
−1(− �AS , i), �AS ≡ �VSSo/c, with

F space
(µ) ∼ N−2

o . When No is large enough, F space
(µ) does not cause any practically measurable

effect.
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5.5 c-invariant quantum electrodynamics

We can now combine the previous results.

Proposition 7. The c-invariant Dirac equation for a free particle with spin 1
2 is(

γµ∂µ + c�−1Λ−1/2m
)

ψ = 0. (24)

where γµ are the Dirac matrices.

Result 3. Equation (24) tells us that neutrinos moving at speed c must have vanishing apparent
mass and nonzero rest mass in every c-invariant theory with finite NS(�n) and hence satisfy the
c-invariant Dirac equation with vanishing mass term and a two-component theory.

We now study the electromagnetic coupling. In the presence of electromagnetic fields we
obtain[

γµ

(
∂µ − iqc−1

�
−1Aµ

)
+ c�−1Λ−1/2m̂

]
ψ = 0, (25)

where m̂ ≡ moΛ−1/2λ̂ ≡ moΛ−1/2f
−1/2
S (�̂u).

The replacement Pµ �→ −i�Λ∂µ − qc−1ΛAµ = −i�∂µ − qc−1Aµ and the identity �u = c2 �PE−1

give �̂u = −c2(i�∇ + qc−1Λ−1 �A)/(i�∂t − Λ−1qφ) =c2 �PmE−1
m , where the two operators �Pm and

E−1
m must be regarded as commutative. For an eigenfunction of the energy operator E−1

m with
eigenvalue E we have E−1

m ψ = (E − qφ)−1ψ and

�PmE−1
m ψ = (E − qφ)−1 �Pmψ,

(
�PmE−1

m

)2
ψ = (E − qφ)−2 �P 2

mψ, ect.

For the electron in a hydrogen atom being at rest in any S ∈ Σ, we have �̂u = cR∇ where
R ≡ −i�Λc/(E + Λ−1e2/r). For example, taking our model case

λ ≡ f
−1/2
S (�u) = f

−1/2
S (�VS∗S) = f

−1/2
So

(�VS∗So)/f
−1/2
So

(�VSSo)

= Λ1/2
√

1 − βN
o = Λ1/2

{
1 −

[
1 − Γ−2(1 + �AS · �u/c)−2

(
1 − u2/c2

)]N/2
}1/2

one finds

λ̂ ≡ f
−1/2
S (�̂u) = Λ1/2

{
1 −

[
1 − Γ−2(1 + R �AS · ∇)−2

(
1 − R2∇2

)]N/2
}1/2

,

where Γ ≡ (1−A2
S)−1/2. The first approximation is λ̂ = 1−N

2 ΛΓ−2AN−2
s R �AS ·∇ = 1− �DS ·(R∇),

where �DS ≡ 1
2NΛAN−2

S

(
1 − A2

S

)
�AS . Since fS(�V ) is almost 1 within the velocity range of the

particles in the accelerators and u � c for electrons bound in atoms, we have a very good
approximation:

λ̂ ≈ 1, m̂ ≈ moΛ−1/2.

So we obtain an approximate equation for electrons bound in an atom which is at rest in an
inertial frame S:(−i�c�α · ∇ + γ4mocΛ−1

)
ψ(�r) =

(
Λ−1E + Λ−2Ze2/r

)
ψ(�r),

whose N · R approximation is E = moc
2
(
1 − 1

2n2 Λ−4Z2α2
)
, n = 1, 2, 3, . . . and

ν(i → f) = moc
2h−1Λ−5 1

2
Z2α2

(
n−2

f − n−2
i

)
,

(
α ≡ e2

�
−1c−1

)
(26)
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which gives the frequency spectrum of the photons emitted from the atom and observed in S;
(the notion (i → f) meaning from initial to final state).

Now let us consider frequency shifts. Label

Kµ ≡ ( �K, iω/c) ≡ �
−1Λ−1Pµ ≡ �

−1Λ−1(�P , iE/c), ω = 2πν,

which is the covariant wave vector of a particle. By use of the transformation rule for a covariant
4-vector, we obtain

ν/ν ′ = f
1/2
S (�VS′S)

(
1 − �n · �VS′S/c

)−1 (
1 − V 2

S′S/c2
)1/2

, (�n = �P/|�P |). (27)

If the particle is a photon, (27) gives the formula of frequency shifts. It is interesting that
taking the point of view of an emission theory can also give (27). Let �u and �u′ be the velocities
of the same photon (as a “bullet”) observed in the S and S′ respectively. From the velocity
addition law, we know that u = u′ = c. However, the same velocity addition law gives

lim
�u→c�n

(
1 − u2/c2

) (
1 − u′2/c2

)−1 =
(
1 − �n · �VS′S/c

)2 (
1 − V 2

S′S/c2
)−1

. (28)

Thus, (12), (27), and (28) give

ν/ν ′ = f
1/2
S (�VS′S)(1 − �n · �VS′S/c)−1

√
1 − V 2

S′S/c2,

which is identical with (27). Of course, light sources are not Galileo–Newton’s “guns”.
Let S1 be the instantaneous rest frame of a moving atom and ν1(S1)(i → f) be the spectrum

of photons emitted from the atom and observed in the S1-system. Using (26) one can write

ν1(S1)(i → f) = moc
2h−1Λ−5

1

1
2
Z2α2

(
n−2

f − n−1
i

)
, Λ1 ≡ fSo(�VS1So).

Let ν(S1)(i → f) be the spectrum of the same photons observed in S. Using (27) one can
obtain the frequency shifts of the spectrum:

ν(S1)(i → f) = fS(�VS1S)
(
1 − �n · �VS1S/c

)−1 (
1 − V 2

S1S/c2
)1/2

ν1(S1)(i → f).

The new formula for Doppler shifts is given by

ν(S1)(i → f)
ν(i → f)

= f
−9/2
S (�VS1S)

(
1 − �n · �VS1S/c

)−1 (
1 − V 2

S1S/c2
)1/2

. (29)

When the source-speed VS1S is high enough, (29) is most sensitive by comparison to the possible
deviation of the values of transformation factors from 1, because the transformation factor
fS(�VS1S) appears in the formula with the exponent −9/2. To test (29), we suggest accelerating
lithium ions to sufficiently high speed and then observing their light spectrum. This will be
a crucial test if NS(�n) is not too large. In principles, such experiment will find the function
form of the factor function of a laboratory-system S. Then according to Theorem 1 the factor
function of S will determine the function forms of the factor functions of all inertial coordinate
systems. In particular, letting S′ = So and �VS′′So = �Vo, we find the consistency condition that

fSo(�Vo) = fS(�Vo ⊕ �VSoS)/fS(�VSoS), (30)

which must be exactly independent of the direction of �Vo since fSo is isotropic. The unique
solution �VSoS which makes the right side of (30) independent of the direction of �Vo is the
velocity of the special and exactly isotropic inertial frame So relative to S and −�VSoS is just the
special velocity of the laboratory-system S relative to the special and exactly isotropic inertial
frame So. Furthermore, the following theorem is trivially true.
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Theorem 7. If NS(�n) ≡ lim
�u→c�n

Λγ ≡ lim
�u→c�n

f
−1/2
S (�u)γ < ∞, then there exists a ub < c such that

fS(�V ) deviates markedly from 1 when V > ub, i.e. the deviation of fS(�V ) from 1 is large enough
in the case V > ub and will easily be tested by experiment if only the corresponding energy Eb is
within the power of accelerators man can or will be able to build.

Our unique results are mainly described in Result 1, 2 and 3, which are based on the assump-
tion

lim
�u→c�n

f
−1/2
S (�u)γ < ∞. (31)

We emphasize the following

Theorem 8. If ub is high enough and Eb is large enough, then there will never be direct crucial
experimental evidence except for indirect evidence, which would be able to tell us Einstein rela-
tivity principle, Einstein symmetry and the relevant results, and our assumption with Result 1, 2
and 3 are true or not.

6 Conclusion

The equations of laws of physics invariant under c-invariant groups are the analogue of the
classical Lorentz invariant equations but with the transformation factors appearing in the equa-
tions; especially those from the instantaneous rest frames of particles and the special inertial
coordinate system to an arbitrarily given observer – inertial-system. All the equations will go
back to their counterparts in the Lorentz invariant theory, if one takes the Lorentz group. The
Lorentz invariant theory is that with all the transformation factors equal to 1.

In comparison with Newton’s principle, Einstein’s theory of relativity is a refinement of the
classical Newton theory. It is necessary to know what are the phenomena which are most
sensitive to the change of an axiom and those which are not affected at all, in order to avoid
doing useless experiments and center attention on those phenomena which are proved to be most
sensitive in comparison to the change. Evidently, one wants to verify ones faith in the Einstein
symmetry and his first postulate, which claims that when

moc
2√

1 − V 2
S′S/c2

= Ẽ = M̃c2

the S and S′-system are still equivalent, one needs a new theory based on the changed axiom-
structure. Only such a new theory can provide the information about sensitivity of various
phenomena to the change of the axiom system and a possibility to examine different faiths
carefully by indicating the most sensitive phenomena by comparison phenomena and relevant
crucial tests. Even if in Theorem 8 ub is too close to c such that Eb is too large to give any
practically measurable deviations of the new theory from the current one within the energy
region the objects of experiment will be able to reach, the following theoretical results are still
valued if only

lim
�u→c�n

f
−1/2
S (�u)γ �= ∞.

(1) The upper limit of the momentum-energy of a particle in any observer-inertial-system
is finite. The upper bounds give natural and real ultraviolet cut-offs manifestly contravariant,
and the minimum lengths and time intervals of particles in the sense of uncertainty indicating
a true meaning of “discrete” or “quantized” space-time and of any model for non-pointlike



588 R. Schmid and Q. Sun

elementary particles. The unreasonable operations, “infinities minus infinities”, will become
“finite quantities minus finite ones” in the renormalizations due to the cut-offs.

(2) All particles with nonzero energies must have nonzero rest masses. The finite 4-momenta
of the particles moving with speed c are given by l’Hospital-type limits rather than by the
irrational calculation, “zero over zero”, without acceptable limit process in Einstein’s theory.
All the particles moving with speed c obey the corresponding equations with vanishing mass
terms. The nonzero rest masses of neutrinos consist with a two-component theory and the
nonzero rest masses of photons and other free gauge particles consist with the gauge invariances
characterized by vanishing mass terms if these particles move with speed c.

Generally, in any theory invariant under a c-invariant group there are gauge invariances for
the gauge particles moving with speed c, which are characterized by the vanishing mass terms,
no matter whether “the first postulate” is absolutely valid and the free gauge particles possess
zero rest masses. The gauge invariances root in the frame-invariance of the finite transmission
rate of interactions. The gauge particles obeying the corresponding gauge invariances possess
their nonzero rest masses only in the theories invariant under those c-invariant groups which
give the ultraviolet cut-offs.

A new gravitational theory whose zero-field limitation will give the non-Minkowski metric
will be established in the future. The difference between it and the general relativity will not
be big, but hopeful of success in removing the singularities (which, according to Einstein, must
be removed), due to the upper bounds of the densities of particle groups.

Einstein underlines that one should not extend his general relativity to where the gravitational
field is very strong and the density of matter is very large [4, p. 129]. In the absence of gravitation,
is the Lorentz invariance an absolute truth? We certainly do not assert so. W. Rindler [6]
expounds profoundly the nature of physical laws: “. . . even the best of physical laws do not
assert an absolute truth, but rather an approximation to the truth . . . no amount of experimental
agreement can ever “prove” a theory, partly because no experiment can ever be infinitely accurate,
and partly because we can evidently not test all relevant instances . . .Although special relativity
is today one of the most firmly established theories in physics . . . it is well to keep an open mind
even here. . . . some law of special relativity may one day be found to fail . . . every theory is
only a model . . . theories should not stagnate in complacency.” Also, T.D. Lee [5] said that
it seems more than likely that our present understanding is transitory and our basic concepts
and theories will further undergo major changes. Because of the irrational operations, infinities
minus infinities in the renormalizations of the Lorentz invariant quantum field theories, Dirac [3]
asserted that the foundations of the current theory must be reformed. In this paper, we actually
reform the corner-stone of the current fundamental theory.
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