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The asymptotic expansions (at small and large internuclear distances R) of the eigenvalues
(potential curves) E(R) of the two-Coulomb-centre problem by the perturbation theory are
obtained.

1 Introduction

In the present time a severe asymmetry exists in development of the theories of nonrelativis-
tic and relativistic quantum-mechanical problems of two Coulomb centres (the so-called Z1eZ2

problem). Numerous effective asymptotic and numerical methods of solving the two-Coulomb-
centre problem for the Schrödinger equation (see, for instance, [1] and references therein) can be
opposed only by seldom examples of the consideration of same problem for the Dirac equation
within various approximations [2, 3, 4, 5] (the Galerkin method, diagonalization, variational
method, perturbation theory, Furry–Sommerfeld–Maue approximation). Such situation is a sur-
prising example of passivity of the theory at the deficiency of experimental data for heavy and
superheavy quasi-molecular systems due to the difficulties in construction of sources of multiply
charged ions and formation of beams of rather slow particles.

Besides, with the recent erection of powerful accelerators of highly charged ions in many
laboratories [6, 7] the need of the consistent Dirac theory of the quantum mechanical problem
is more and more urgent in different fields of physics. Previously, this problem was applied,
basically, in the theory of supercritical atoms for the description of effects of spontaneous and
enforced creation of positrons in a supercritical field of a quasi-atom formed at slow collisions
of heavy ions with a total atomic number Z1 + Z2 > 173 [3, 8, 9]. Rather recently [10], Z1eZ2

problem was used as a model approximation in the investigations of elementary processes of
collisions (excitation, charge exchange, ionization) of multiply charged ions. Other application
of the relativistic problem in theory of collisions is more traditional, and is reduced to using the
model functions of a continuous spectrum for the analysis of scattering of relativistic electrons
on heavy diatomic molecules [10].

The difficulty in considering the problem consists in the fact that the Dirac equation with
the potential of two Coulomb centres does not permit complete separation of variables in any
orthogonal system of coordinates and, thus, one has to deal with first-order partial differential
equations. This highly complicates the whole specific problem of finding the electron wave func-
tion and potential curves. Unfortunately, numerical solving this system of differential equations
is rather complicated and cumbersome problem [4, 5] requiring complicated calculations for
each specific system Z1eZ2. This causes the necessity of creating and investigating approxima-
tive methods of solving this problem, which are based on clear physical ideas and well elaborated
mathematical device and have a clear area of application.

In the present paper we determine the energy of an electron for two asymptotic cases, when
the distance R between the Coulomb centres is rather small or rather large. For this we use
the scheme of the perturbation theory which does not require the separation of variables. As



Asymptotic Expansions of the Potential Curves 673

a result of the performed calculations, the asymptotic expressions for levels of energy of system
Z1eZ2 are obtained at R → 0 (R → ∞) up to the terms O(R3) (O(R−3)).

2 Asymptotic expansions of the solutions
of the problem at R → 0

When the total charge of Coulomb centres Z = Z1 + Z2 is positive and internuclear distance R
tends to zero, it is possible to consider the relativistic problem within the perturbation theory.
The Dirac Hamiltonian of the problem Z1eZ2 is of the form (me = e = � = 1):

Ĥ = c�α · �̂p + c2β + V, V = −Z1

r1
− Z2

r2
, (1)

where r1,2 is the distance between the electron and the corresponding nucleus, �̂p = −i� is the
momentum operator, and c is the velocity of light. In standard representation [11],

�α =
(

0 �σ
�σ 0

)
, β =

(
I 0
0 −I

)
.

Here �σ are Pauli matrices, and 0 and I are, respectively, 2×2 zero and identity matrices. Let us
represent the complete Hamiltonian of the two-Coulomb-centre problem Ĥ by the Hamiltonian
of zero approximation ĤUA and perturbation Ŵ :

Ĥ = ĤUA + Ŵ .

As ĤUA the Dirac Hamiltonian of the united relativistic atom

ĤUA = c�α · �̂p + c2β − Z

r0

is taken, the atom being placed on the axis z, directed from centre Z1 to centre Z2, in the
point z = z0 that is the centre of electric charges and divides the internuclear distance into two
segments:

R1 =
Z2

Z
R, R2 =

Z1

Z
R.

We consider a spherical system of coordinates r0, θ0, ϕ0: the origin is in the point (0, 0, z0) and
the angle θ0 is measured from the axis z.

Now we construct the unperturbed wave function of an united atom. The eigenvalues of the
operator are characterized by spherical quantum numbers n, j, l, m, where n is the principal
quantum number, j and l are the total electron and orbital angular moments, respectively, is
the projection of j onto the internuclear axis z. The explicit form of the eigenfunctions of the
operator ĤUA can be found in [11]. Expanding the perturbation operator Ŵ in the Legendre
polynomials and calculating the matrix elements of the matrix

∥∥∥Wnjl′m′
njlm

∥∥∥ to the first (within the

terms O
(
R3

)
) nonzero term we see that at R → 0 the matrix

∥∥∥Wnjl′m′
njlm

∥∥∥ is diagonal with respect
to each group of mutually degenerated (on l and m) states. The residual result for energy of
Z1eZ2 system at is R → 0

Enjlm(R) = εc2 +
Z1Z2

2N3
· 3m2 − j(j + 1)

j(j + 1)
·
[
3εℵ(εℵ − 1) − γ2 + 1

] · (ZR)2

γ(γ2 − 1)(4γ2 − 1)
+ O

(
R3

)
, (2)

where

nr = n − j − 1/2, ℵ = (−1)k−lk, k = j + 1/2, l = j ± 1/2, (3)
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N =
√

n2 − 2nr(k − γ), γ =
√

k2 − (Zα0)2,

ε =

[
1 +

(
Zα0

nr + γ

)2
]−1/2

, α0 =
1
c
. (4)

We have compared (see Fig. 1) the binding energies of some bound states of the Pb-Pb system
calculated by asymptotic formula (2) with results of paper [5]. The difference ≈ 5% is connected
with the finite extension of the Pb nuclei in [5].

Figure 1.

3 Asymptotic expansions of the solutions
of the problem at R → ∞

Now we shall determine the energy E(R) and the wave functions Ψ(�r; R) of an electron in the
asymptotic region, when the distance R between the Coulomb centres is large. This distance
should be so large that the quantum penetrability of the potential barrier separating atomic
particles is much smaller than unity. When atoms 1 and 2 are different, the eigenvalues (potential
curves) E(R) of the two-Coulomb-centre problem, dependent on the internuclear distance R as
a parameter, are divided into two classes in the asymptotic limit R → ∞: EI - and EII -potential
curves that, for R → ∞, transform into the energy levels of isolated atoms 1 and 2, respectively.

Having placed the origin at the position of the hydrogen-like ion eZ1 with nuclear charge Z1

and run the polar axis along the R axis, we represent a complete Hamiltonian of the two-
Coulomb-centre problem (1) by a Hamiltonian of zero-approximation ĤSA and perturbation V̂ :

Ĥ = ĤSA + V̂ .

As ĤSA the Hamiltonian of the relativistic hydrogen-like atom with charge Z1

ĤSA = c�α · �̂p + c2β − Z1

r1

is taken. In a spherical coordinate system wave functions ΨSA
n1j1l1m1

(�r1) of eZ1 atom, belonging
to a discrete energy spectrum, are characterized by the set quantum numbers n1, j1, l1, m1.
At large internuclear distances the operator of the interaction between the electron and the Z2

nucleus V̂ = −Z2/
∣∣∣�R − �r

∣∣∣ can be considered as a small perturbation of the Hamiltonian ĤSA.

As in previous case we expand the perturbation operator V̂ in the Legendre polynomials and
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calculate the matrix
∥∥∥V

n1j1l′1m′
1

n1j1l1m1

∥∥∥ of the perturbation operator to the first non-zero diagonal
term.

Diagonalizing the complete matrix of energy with respect to each group of mutually degen-
erate states we obtain the analytical expression for EI -potential curves in the first order of the
perturbation theory

EI(R) = ε1c
2 − Z2

R
± 3

4

√
N2

1 − ℵ2
1

(nr1 + γ1) m1

j1(j1 + 1)
Z2

Z1R2
+ O

(
R−3

)
, (5)

where the quantities nr1, ℵ1, k1, l1, N1, γ1, ε1 are obtained from (3), (4) by adding index 1.
The third term in (5) coincides with the Stark shift of level in the weak electric field with the
intensity −Z2/R2 [12].

The asymptotic expansion of the potential curve EII is obtained from EI by the substitutions
ε1 → ε2, Z1,2 → Z2,1, n1,ℵ1, j1, m1 → n2,ℵ2, j2, m2.

4 Conclusions

Here we briefly summarize the results obtained in this paper. By means of the perturbation
theory we have calculated the asymptotic expansion of the eigenvalues (potential curves) E(R)
of the two-Coulomb-centre problem in the limits of united (R → 0) and separated (R → ∞)
atoms with the precision to O

(
R3

)
and O

(
R−3

)
, respectively. Note that asymptotic expressions

of the potential curves obtained here are applicable under the condition that quantities γ, γ1,2

are real only, which corresponds to the range of applicability of the Dirac equation solutions for
the point-charge.
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